Abstract

We report 3D integral imaging with an electronically tunable-focal-length lens for improved depth of field. The micro-zoom arrays are generated and implemented based on the concept of parallel apodization. To the best of our knowledge, this is the first report of parallel dynamic focusing in integral imaging based on the use of micro-zoom arrays.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (France) 7, 821-825 (1908).
  2. C. B. Burckhardt, “Optimum parameters and resolution limitation of Integral Photography,” J. Opt. Soc. Am. 58, 71-76 (1968).
    [CrossRef]
  3. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548-564 (1980).
    [CrossRef]
  4. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034-2045 (1998).
    [CrossRef]
  5. H. Arimoto and B. Javidi, “Integral 3D imaging with digital reconstruction,” Opt. Lett. 26, 157-159 (2001).
    [CrossRef]
  6. R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237-5242 (2004).
    [CrossRef] [PubMed]
  7. R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools,” J. Disp. Technol. 1, 321-327 (2005).
    [CrossRef]
  8. J.-S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144-1146 (2002).
    [CrossRef]
  9. J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924-1926 (2003).
    [CrossRef] [PubMed]
  10. R. Martínez-Cuenca, A. Pons, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Optically-corrected elemental images for undistorted integral image display,” Opt. Express 14, 9657-9663 (2006).
    [CrossRef] [PubMed]
  11. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324-326 (2002).
    [CrossRef]
  12. J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt. 45, 1704-1712 (2006).
    [CrossRef] [PubMed]
  13. S. Jung, J.-H. Park, H. Choi, and B. Lee, “Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement,” Opt. Express 12, 1346-1356 (2003).
    [CrossRef]
  14. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255-16260 (2007).
    [CrossRef] [PubMed]
  15. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
    [CrossRef] [PubMed]
  16. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483-491 (2004).
    [CrossRef] [PubMed]
  17. C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth measurement from integral images through viewpoint image extraction and a modified multibaseline disparity analysis algorithm,” J. Electron. Imaging 14, 023018 (2005).
    [CrossRef]
  18. A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral Imaging,” Proc. IEEE 94, 591-608 (2006).
    [CrossRef]
  19. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067-1077 (2009).
    [CrossRef]
  20. B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).
    [CrossRef]
  21. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17, 2487-2499 (2009).
    [CrossRef] [PubMed]
  22. R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973), Chap. 2.
  23. C. Quillet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
    [CrossRef]
  24. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 59-163 (2000).
    [CrossRef]
  25. C. Gabay, B. Berge, G. Dovillaire, and S. Bucourt, “Dynamic study of a Varioptic variable focal lens,” Proc. SPIE 4767, 159-165 (2002).
    [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

2009 (2)

2007 (1)

2006 (3)

2005 (2)

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth measurement from integral images through viewpoint image extraction and a modified multibaseline disparity analysis algorithm,” J. Electron. Imaging 14, 023018 (2005).
[CrossRef]

R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools,” J. Disp. Technol. 1, 321-327 (2005).
[CrossRef]

2004 (3)

2003 (2)

J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924-1926 (2003).
[CrossRef] [PubMed]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement,” Opt. Express 12, 1346-1356 (2003).
[CrossRef]

2002 (3)

2001 (2)

C. Quillet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
[CrossRef]

H. Arimoto and B. Javidi, “Integral 3D imaging with digital reconstruction,” Opt. Lett. 26, 157-159 (2001).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 59-163 (2000).
[CrossRef]

1998 (1)

1980 (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548-564 (1980).
[CrossRef]

1968 (1)

1908 (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (France) 7, 821-825 (1908).

Aggoun, A.

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth measurement from integral images through viewpoint image extraction and a modified multibaseline disparity analysis algorithm,” J. Electron. Imaging 14, 023018 (2005).
[CrossRef]

Arai, J.

Arimoto, H.

Berge, B.

C. Gabay, B. Berge, G. Dovillaire, and S. Bucourt, “Dynamic study of a Varioptic variable focal lens,” Proc. SPIE 4767, 159-165 (2002).
[CrossRef]

C. Quillet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
[CrossRef]

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 59-163 (2000).
[CrossRef]

Bucourt, S.

C. Gabay, B. Berge, G. Dovillaire, and S. Bucourt, “Dynamic study of a Varioptic variable focal lens,” Proc. SPIE 4767, 159-165 (2002).
[CrossRef]

Burckhardt, C. B.

Choi, H.

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement,” Opt. Express 12, 1346-1356 (2003).
[CrossRef]

De Nicola, S.

Dovillaire, G.

C. Gabay, B. Berge, G. Dovillaire, and S. Bucourt, “Dynamic study of a Varioptic variable focal lens,” Proc. SPIE 4767, 159-165 (2002).
[CrossRef]

Ferraro, P.

Finizio, A.

Gabay, C.

C. Gabay, B. Berge, G. Dovillaire, and S. Bucourt, “Dynamic study of a Varioptic variable focal lens,” Proc. SPIE 4767, 159-165 (2002).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Grilli, S.

Hong, J.

Hong, S.-H.

Hoshino, H.

Jang, J.-S.

Javidi, B.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067-1077 (2009).
[CrossRef]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255-16260 (2007).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral Imaging,” Proc. IEEE 94, 591-608 (2006).
[CrossRef]

R. Martínez-Cuenca, A. Pons, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Optically-corrected elemental images for undistorted integral image display,” Opt. Express 14, 9657-9663 (2006).
[CrossRef] [PubMed]

R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools,” J. Disp. Technol. 1, 321-327 (2005).
[CrossRef]

R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237-5242 (2004).
[CrossRef] [PubMed]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483-491 (2004).
[CrossRef] [PubMed]

J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924-1926 (2003).
[CrossRef] [PubMed]

J.-S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144-1146 (2002).
[CrossRef]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324-326 (2002).
[CrossRef]

H. Arimoto and B. Javidi, “Integral 3D imaging with digital reconstruction,” Opt. Lett. 26, 157-159 (2001).
[CrossRef]

B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).
[CrossRef]

Jung, S.

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement,” Opt. Express 12, 1346-1356 (2003).
[CrossRef]

Kim, H.-R.

Kim, J.

Kim, Y.

Kung, S. Y.

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth measurement from integral images through viewpoint image extraction and a modified multibaseline disparity analysis algorithm,” J. Electron. Imaging 14, 023018 (2005).
[CrossRef]

Lee, B.

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
[CrossRef] [PubMed]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement,” Opt. Express 12, 1346-1356 (2003).
[CrossRef]

Lee, S.-D.

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (France) 7, 821-825 (1908).

Longhurst, R. S.

R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973), Chap. 2.

Martinez-Corral, M.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067-1077 (2009).
[CrossRef]

Martínez-Corral, M.

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067-1077 (2009).
[CrossRef]

Martínez-Cuenca, R.

McCormick, M.

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth measurement from integral images through viewpoint image extraction and a modified multibaseline disparity analysis algorithm,” J. Electron. Imaging 14, 023018 (2005).
[CrossRef]

Miccio, L.

Navarro, H.

Okano, F.

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548-564 (1980).
[CrossRef]

Okui, M.

Park, J.-H.

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
[CrossRef] [PubMed]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement,” Opt. Express 12, 1346-1356 (2003).
[CrossRef]

Paturzo, M.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 59-163 (2000).
[CrossRef]

Pons, A.

Quillet, C.

C. Quillet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
[CrossRef]

Saavedra, G.

Son, J. Y.

B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).
[CrossRef]

Stern, A.

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral Imaging,” Proc. IEEE 94, 591-608 (2006).
[CrossRef]

Vespini, V.

Wu, C.

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth measurement from integral images through viewpoint image extraction and a modified multibaseline disparity analysis algorithm,” J. Electron. Imaging 14, 023018 (2005).
[CrossRef]

Yamashita, T.

Yuyama, I.

Appl. Opt. (2)

Curr. Opin. Colloid Interface Sci. (1)

C. Quillet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 59-163 (2000).
[CrossRef]

J. Disp. Technol. (1)

R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Extended depth-of-field 3-D display and visualization by combination of amplitude-modulated microlenses and deconvolution tools,” J. Disp. Technol. 1, 321-327 (2005).
[CrossRef]

J. Electron. Imaging (1)

C. Wu, A. Aggoun, M. McCormick, and S. Y. Kung, “Depth measurement from integral images through viewpoint image extraction and a modified multibaseline disparity analysis algorithm,” J. Electron. Imaging 14, 023018 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. (France) (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (France) 7, 821-825 (1908).

Opt. Express (6)

Opt. Lett. (5)

Proc. IEEE (3)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548-564 (1980).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral Imaging,” Proc. IEEE 94, 591-608 (2006).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067-1077 (2009).
[CrossRef]

Proc. SPIE (1)

C. Gabay, B. Berge, G. Dovillaire, and S. Bucourt, “Dynamic study of a Varioptic variable focal lens,” Proc. SPIE 4767, 159-165 (2002).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973), Chap. 2.

B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (517 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Illustration of the TRES concept. Owing to the telecentricity of the relay system, the aperture stop is backprojected virtually onto the front focal plane of any microlens. Only rays passing through the projected micropupils and therefore emerging from the microlens parallel to its optical axis will reach the sensor. EPs, entrance pupils; MLA, microlens array. The matrix sensor is the camera. (b) When a lens is inserted at the TRES aperture stop, the lens optical power is projected in parallel in front of any microlens.

Fig. 2
Fig. 2

Measured relation between the optical power of the liquid lens and the applied voltage.

Fig. 3
Fig. 3

(a) Experimental setup used for the multiple-imaging experiment. The liquid lens was inserted into the aperture-stop plane of the camera lens. The distance from the field lens to the camera lens was adjusted so that the system is telecentric. By placing the microlens array in front of the field lens, a collection of elemental images of the 3D scenes was obtained. (b) Image of the variable-focal-length lens mount, obtained by means of an auxiliary digital camera.

Fig. 4
Fig. 4

Four frames of a movie (Media 1) obtained after continuously modifying the optical power of the variable-focal-length lens. (a) The parallel-imaging system focuses farther than the red die. (b) The focus is on the red die. (c) Intermediate focusing. (d) The focus is on the blue die.

Fig. 5
Fig. 5

Reconstructed field calculated by projecting the integral images of Figs. 4a, 4b through the corresponding pinhole array. Optical barriers were also simulated to avoid overlapping.

Fig. 6
Fig. 6

Scheme of the coupling between any microlens and the projected power. Whereas the total power and the position of the front focal planes do not change, the back focal plane is shifted toward the microlens.

Tables (1)

Tables Icon

Table 1 Nominal Specifications of Liquid Lens Used for Experiments

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

z = f m 2 z
M m = f m z ,
ζ = ζ M T 2 = ( z + Δ ) M T 2 ,
1 z = 1 f m 2 ( ζ M T 2 Δ ) .
M = M m M T = 1 z f m f S f F = ( ζ M T 2 Δ ) f S f m f F .
ζ N = ζ + f S 2 φ L ,
1 z N = 1 z + ( f F f m ) 2 φ L .
M N = M + f S f F f m φ L .
t L ( x , y ) = exp { i π φ L λ ( x 2 + y 2 ) } .
M p = f m f F ,
t PL ( x , y ) = t L ( x M p , y M p ) = exp { i π φ L λ M p 2 ( x 2 + y 2 ) } .
φ PL = f F 2 f m 2 φ L .
z N = z + f F 2 φ L

Metrics