Abstract

In an optical coherence tomography system, the sidelobes of the point-spread function (PSF) introduced from the optical source reduce the A-scan imaging resolution and contrast of the images. A gradual iterative signal subtraction method based on the study of a point signal influenced by other points with different distances through the PSF is proposed in this paper. Comparing with the CLEAN algorithm and two typical deconvolution methods, the processed results demonstrate this algorithm can reduce sidelobes effectively with the least runtime. It is also found that it is insensitive to noise while slightly improving the longitudinal resolution, which shows this algorithm is good for improving image quality.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. C. Akcay and J. P. Rolland, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28, 1921-1923 (2003).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66-75 (1998).
    [CrossRef]
  4. D. Piao, Q. Zhu, N. K. Dutta, S. Yan, and L. L. Otis, “Cancellation of coherent artifacts in optical coherence tomography imaging,” Appl. Opt. 40, 5124-5131 (2001).
    [CrossRef]
  5. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406-408 (2002).
    [CrossRef]
  6. J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40, 5787-5790 (2001).
    [CrossRef]
  7. E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13, 64-66 (2001).
    [CrossRef]
  8. D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281-1287 (2004).
    [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  10. G. Thomas, “An improvement of the van-Cittert's method,” in Proceedings of IEEE International Conference on Acoustics Speech, Speech, and Signal Processing (IEEE, 1981), pp. 47-49.
  11. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2002).
  12. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26, 72-77 (2009).
    [CrossRef]
  13. Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
    [CrossRef]
  14. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett. 29, 2878-2880 (2004).
    [CrossRef]
  15. X. Liu, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line,” Opt. Lett. 29, 80-82 (2004).
    [CrossRef] [PubMed]

2009 (1)

2007 (1)

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

2004 (3)

2003 (2)

A. C. Akcay and J. P. Rolland, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28, 1921-1923 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

2002 (1)

2001 (3)

1998 (1)

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66-75 (1998).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

Akcay, A. C.

Boppart, S. A.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281-1287 (2004).
[CrossRef] [PubMed]

Carney, P. S.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281-1287 (2004).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chujo, W.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13, 64-66 (2001).
[CrossRef]

Cobb, M. J.

de Boer, J. F.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Dutta, N. K.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Fujimoto, J. G.

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett. 29, 2878-2880 (2004).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2002).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ko, T. H.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Li, X.

Liang, Y.

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26, 72-77 (2009).
[CrossRef]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Liu, X.

Liu, Y.

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26, 72-77 (2009).
[CrossRef]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Marks, D.

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281-1287 (2004).
[CrossRef] [PubMed]

Moore, S. C.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13, 64-66 (2001).
[CrossRef]

Mu, G.

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26, 72-77 (2009).
[CrossRef]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Nassif, N.

Nelson, J. S.

Otis, L. L.

Park, B. H.

Piao, D.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rolland, J. P.

Sampson, D. D.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13, 64-66 (2001).
[CrossRef]

Saxer, C. E.

Schmitt, J. M.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66-75 (1998).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Smith, E. D. J.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13, 64-66 (2001).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Thomas, G.

G. Thomas, “An improvement of the van-Cittert's method,” in Proceedings of IEEE International Conference on Acoustics Speech, Speech, and Signal Processing (IEEE, 1981), pp. 47-49.

Tlotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tong, Z.

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Tripathi, R.

Wada, N.

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13, 64-66 (2001).
[CrossRef]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2002).

Yan, S.

Zhu, Q.

Zhu, X.

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26, 72-77 (2009).
[CrossRef]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (1)

E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for OCDR using non-Gaussian broad-band sources,” IEEE Photonics Technol. Lett. 13, 64-66 (2001).
[CrossRef]

J. Biomed. Opt. (2)

D. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1281-1287 (2004).
[CrossRef] [PubMed]

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt. 3, 66-75 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279, 23-26 (2007).
[CrossRef]

Opt. Lett. (4)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Tlotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

G. Thomas, “An improvement of the van-Cittert's method,” in Proceedings of IEEE International Conference on Acoustics Speech, Speech, and Signal Processing (IEEE, 1981), pp. 47-49.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Flowchart of the GIS algorithm in the forward direction in an A-line.

Fig. 2
Fig. 2

(a) Measured PSD and (b) the normalized corresponding coherence function of the light source.

Fig. 3
Fig. 3

OCT images of the air–mirror interface: (a) degraded image, (b) deconvolved image by Lucy–Richardson algorithm, (c) deconvolved image by van Cittert’s method, (d) corrected image by the CLEAN algorithm, (e) corrected image by the GIS algorithm. (f)—(j) are the extracted parts from the enhanced images of (a)—(e), respectively: (f) degraded image, (g) deconvolved image by Lucy–Richardson algorithm, (h) deconvolved image by van Cittert’s method, (i) corrected image by the CLEAN algorithm, (j) corrected image by the GIS algorithm.

Fig. 4
Fig. 4

Normalized signals of an arbitrary A-scan line of the air–mirror interface in Fig. 3: (a) linear signals, (b) logarithmic signals. The degraded signal, the signal corrected by the CLEAN algorithm, and the signal corrected by the GIS algorithm are shown by red dashed, blue dotted, and green solid curves, respectively.

Fig. 5
Fig. 5

OCT images of orange pulp: (a) degraded image, (b) corrected image by the CLEAN algorithm, (c) corrected image by the GIS algorithm. Three enlarged images in the rectangular boxes of (a)—(c) are shown in (d)—(f): (d) degraded image, (e) corrected image by the CLEAN algorithm, and (f) corrected image by the GIS algorithm.

Fig. 6
Fig. 6

Normalized signal intensity of an arbitrary A-scan line of the orange pulp in Fig. 5: (a) linear signals, (b) logarithmic signals. The degraded signal, the signal corrected by the CLEAN algorithm, and the signal corrected by the GIS algorithm are shown by red dashed, blue dotted, and green solid curves, respectively.

Fig. 7
Fig. 7

OCT images of the index finger: (a) degraded image, (b) corrected image by the CLEAN algorithm, (c) corrected image by the GIS algorithm. Three enlarged images in the rectangular boxes of (a)—(c) are shown in (d)—(f): (d) degraded image, (e) corrected image by the CLEAN algorithm, (f) corrected image by the GIS algorithm.

Fig. 8
Fig. 8

Normalized signal intensity of an arbitrary A-scan line of the index finger in Fig. 7: (a) linear signals, (b) logarithmic signals. The degraded signal, the signal corrected by the CLEAN algorithm, and the signal corrected by the GIS algorithm are shown by red dashed, blue dotted, and green solid curves, respectively.

Fig. 9
Fig. 9

Normalized linear signals of an arbitrary A-scan line of the air–mirror interface: (a) degraded signal and corrected signal obtained by the iterative processing in the forward direction, (b) degraded signal and corrected signal obtained by the iterative processing in the reverse direction. Degraded signal and corrected signal are shown by red dashed and blue solid curves, respectively. Horizontal arrow indicates the processing direction.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( τ ) = 2 Re { Γ ( τ ) f ( τ ) } ,
g ( x ) = h ( x ) f ( x ) ,
g ( x i ) = f ( x i ) + k = 1 ( k i ) N h ( x i x k ) f ( x k ) ,
f ( x i ) = g ( x i ) k = 1 ( k i ) N h ( x i x k ) f ( x k ) .
f j ( x ) = { f j 1 ( x ) h ( x x j ) f j 1 ( x j ) , x x j f j 1 ( x ) , x = x j } ,
SNR = 10 log 10 [ max ( X s ) 2 σ n 2 ] .

Metrics