Abstract

A reconstruction method of bioluminescence sources is proposed based on a phase approximation model. Compared with the diffuse approximation, this phase approximation model more correctly predicts bioluminescence photon propagation in biological tissues, so that bioluminescence tomography can accurately locate and quantify the distribution of bioluminescence sources. The compressive sensing (CS) technique is applied to regularize the inverse source reconstruction to enhance numerical stability and efficiency. The numerical simulation and phantom experiments demonstrate the feasibility of the proposed approach.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Contag and M. H. Bachmann, “Advances in bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
    [CrossRef] [PubMed]
  2. P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160-1165 (2003).
    [PubMed]
  3. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef] [PubMed]
  4. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432-440 (2001).
    [CrossRef] [PubMed]
  5. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, 1978).
  6. A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  7. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  8. Gassan S. Abdoulaev and Andreas H. Hielscher, “Three-dimensional optical tomography with the equation of radiative transfer,” J. Electron. Imaging 12, 594-601 (2003).
    [CrossRef]
  9. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323-345 (2005).
    [CrossRef]
  10. G. Wang, E. A. Hoffman, and G. McLennan, “Systems and methods for bioluminescent computed tomographic reconstruction.” Patent disclosure filed in July 2002; U.S. provisional patent application filed in March 2003; U.S. patent application filed in March 2004.
  11. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).
  12. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
    [CrossRef] [PubMed]
  13. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005).
    [CrossRef] [PubMed]
  14. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef] [PubMed]
  15. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365-367 (2006).
    [CrossRef] [PubMed]
  16. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef] [PubMed]
  17. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007).
    [CrossRef]
  18. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989).
    [CrossRef] [PubMed]
  19. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
    [CrossRef] [PubMed]
  20. W. Cong, H. Shen, A. Cong, and G. Wang, “Integral equation of the photon fluence rate and flux based on a generalized Delta-Eddington phase function,” J. Biomed. Opt. 13, 024016 (2008).
    [CrossRef] [PubMed]
  21. W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007).
    [CrossRef]
  22. E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203-4215 (2005).
    [CrossRef]
  23. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.” IEEE Trans. Inf. Theory 52, 489-509 (2006).
    [CrossRef]
  24. E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements.” Commun. Pure Appl. Math. 59, 1207-1223 (2006).
    [CrossRef]
  25. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence omography with sparse a priori information,” Opt. Express 17, 8062-8080 (2009).
    [CrossRef] [PubMed]
  26. J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452-2459 (1976).
    [CrossRef]
  27. S. R. Arridge, “Optical tomography in medical, imaging,” Inverse Probl. 15, R41-R93 (1999).
    [CrossRef]
  28. B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009).
    [CrossRef]
  29. K. E. Atkinson, Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, 1997).
    [CrossRef]
  30. D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. U.S.A. 102, 9446-9451 (2005).
    [CrossRef] [PubMed]
  31. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59-R97 (2009).
    [CrossRef] [PubMed]

2009 (3)

B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009).
[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59-R97 (2009).
[CrossRef] [PubMed]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence omography with sparse a priori information,” Opt. Express 17, 8062-8080 (2009).
[CrossRef] [PubMed]

2008 (1)

W. Cong, H. Shen, A. Cong, and G. Wang, “Integral equation of the photon fluence rate and flux based on a generalized Delta-Eddington phase function,” J. Biomed. Opt. 13, 024016 (2008).
[CrossRef] [PubMed]

2007 (2)

W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007).
[CrossRef]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007).
[CrossRef]

2006 (3)

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.” IEEE Trans. Inf. Theory 52, 489-509 (2006).
[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements.” Commun. Pure Appl. Math. 59, 1207-1223 (2006).
[CrossRef]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365-367 (2006).
[CrossRef] [PubMed]

2005 (7)

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. U.S.A. 102, 9446-9451 (2005).
[CrossRef] [PubMed]

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203-4215 (2005).
[CrossRef]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

2004 (1)

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

2003 (3)

Gassan S. Abdoulaev and Andreas H. Hielscher, “Three-dimensional optical tomography with the equation of radiative transfer,” J. Electron. Imaging 12, 594-601 (2003).
[CrossRef]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160-1165 (2003).
[PubMed]

2002 (1)

C. H. Contag and M. H. Bachmann, “Advances in bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

2001 (1)

W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical, imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

1995 (2)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

1989 (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989).
[CrossRef] [PubMed]

1976 (1)

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452-2459 (1976).
[CrossRef]

Abdoulaev, Gassan S.

Gassan S. Abdoulaev and Andreas H. Hielscher, “Three-dimensional optical tomography with the equation of radiative transfer,” J. Electron. Imaging 12, 594-601 (2003).
[CrossRef]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical, imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Atkinson, K. E.

K. E. Atkinson, Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, 1997).
[CrossRef]

Bachmann, M. H.

C. H. Contag and M. H. Bachmann, “Advances in bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cable, M. D.

W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef] [PubMed]

Candes, E. J.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.” IEEE Trans. Inf. Theory 52, 489-509 (2006).
[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements.” Commun. Pure Appl. Math. 59, 1207-1223 (2006).
[CrossRef]

Candès, E. J.

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203-4215 (2005).
[CrossRef]

Chan, T. F.

Chatziioannou, A. F.

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence omography with sparse a priori information,” Opt. Express 17, 8062-8080 (2009).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Chaudhari, A. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cherry, S. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cong, A.

W. Cong, H. Shen, A. Cong, and G. Wang, “Integral equation of the photon fluence rate and flux based on a generalized Delta-Eddington phase function,” J. Biomed. Opt. 13, 024016 (2008).
[CrossRef] [PubMed]

W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007).
[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

Cong, W.

W. Cong, H. Shen, A. Cong, and G. Wang, “Integral equation of the photon fluence rate and flux based on a generalized Delta-Eddington phase function,” J. Biomed. Opt. 13, 024016 (2008).
[CrossRef] [PubMed]

W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007).
[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

Contag, C. H.

C. H. Contag and M. H. Bachmann, “Advances in bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Coquoz, O.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007).
[CrossRef]

Darvas, F.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Davis, S. C.

Dehghani, H.

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Donoho, D. L.

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. U.S.A. 102, 9446-9451 (2005).
[CrossRef] [PubMed]

Douraghy, A.

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989).
[CrossRef] [PubMed]

Gambhir, S. S.

P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160-1165 (2003).
[PubMed]

Harrach, B.

B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009).
[CrossRef]

Hielscher, and A. H.

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

Hielscher, Andreas H.

Gassan S. Abdoulaev and Andreas H. Hielscher, “Three-dimensional optical tomography with the equation of radiative transfer,” J. Electron. Imaging 12, 594-601 (2003).
[CrossRef]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Hoffman, E. A.

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

G. Wang, E. A. Hoffman, and G. McLennan, “Systems and methods for bioluminescent computed tomographic reconstruction.” Patent disclosure filed in July 2002; U.S. provisional patent application filed in March 2003; U.S. patent application filed in March 2004.

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, 1978).

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Jiang, M.

Jiang, S.

Joseph, J. H.

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452-2459 (1976).
[CrossRef]

Klose, A. D.

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

Kumar, D.

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007).
[CrossRef]

Leahy, R. M.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Li, C.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59-R97 (2009).
[CrossRef] [PubMed]

Li, Y.

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

Liu, Y.

Lu, Y.

McCray, P. B.

McLennan, G.

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

G. Wang, E. A. Hoffman, and G. McLennan, “Systems and methods for bioluminescent computed tomographic reconstruction.” Patent disclosure filed in July 2002; U.S. provisional patent application filed in March 2003; U.S. patent application filed in March 2004.

Meinel, J.

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Nelson, M. B.

W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef] [PubMed]

Ntziachristos, V.

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Patterson, M. S.

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365-367 (2006).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989).
[CrossRef] [PubMed]

Paulsen, K. D.

Pogue, B. W.

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Ray, P.

P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160-1165 (2003).
[PubMed]

Rice, B. W.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007).
[CrossRef]

Rice, W.

W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Romberg, J.

E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements.” Commun. Pure Appl. Math. 59, 1207-1223 (2006).
[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.” IEEE Trans. Inf. Theory 52, 489-509 (2006).
[CrossRef]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Shen, H.

W. Cong, H. Shen, A. Cong, and G. Wang, “Integral equation of the photon fluence rate and flux based on a generalized Delta-Eddington phase function,” J. Biomed. Opt. 13, 024016 (2008).
[CrossRef] [PubMed]

W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007).
[CrossRef]

Smith, D. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Stout, D.

Suter, M.

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

Tanner, J.

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. U.S.A. 102, 9446-9451 (2005).
[CrossRef] [PubMed]

Tao, T.

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.” IEEE Trans. Inf. Theory 52, 489-509 (2006).
[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements.” Commun. Pure Appl. Math. 59, 1207-1223 (2006).
[CrossRef]

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203-4215 (2005).
[CrossRef]

Tian, J.

Troy, T. L.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007).
[CrossRef]

Van Gemert, M. J. C.

A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

Wang, G.

W. Cong, H. Shen, A. Cong, and G. Wang, “Integral equation of the photon fluence rate and flux based on a generalized Delta-Eddington phase function,” J. Biomed. Opt. 13, 024016 (2008).
[CrossRef] [PubMed]

W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007).
[CrossRef]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

G. Wang, E. A. Hoffman, and G. McLennan, “Systems and methods for bioluminescent computed tomographic reconstruction.” Patent disclosure filed in July 2002; U.S. provisional patent application filed in March 2003; U.S. patent application filed in March 2004.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Wang, L. V.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59-R97 (2009).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

Wang, Y.

W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007).
[CrossRef]

Weinman, J. A.

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452-2459 (1976).
[CrossRef]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Welch, A. J.

A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

Wilson, B. C.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989).
[CrossRef] [PubMed]

Wiscombe, W. J.

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452-2459 (1976).
[CrossRef]

Wu, A. M.

P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160-1165 (2003).
[PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989).
[CrossRef] [PubMed]

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007).
[CrossRef]

Zabner, J.

Zhang, X.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

C. H. Contag and M. H. Bachmann, “Advances in bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

Cancer Res. (1)

P. Ray, A. M. Wu, and S. S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160-1165 (2003).
[PubMed]

Commun. Pure Appl. Math. (1)

E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements.” Commun. Pure Appl. Math. 59, 1207-1223 (2006).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues-I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162-1168 (1989).
[CrossRef] [PubMed]

IEEE Trans. Inf. Theory (2)

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203-4215 (2005).
[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.” IEEE Trans. Inf. Theory 52, 489-509 (2006).
[CrossRef]

Inverse Probl. (2)

S. R. Arridge, “Optical tomography in medical, imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

B. Harrach, “On uniqueness in diffuse optical tomography,” Inverse Probl. 25, 055010 (2009).
[CrossRef]

J. Atmos. Sci. (1)

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci. 33, 2452-2459 (1976).
[CrossRef]

J. Biomed. Opt. (3)

W. Cong, H. Shen, A. Cong, and G. Wang, “Integral equation of the photon fluence rate and flux based on a generalized Delta-Eddington phase function,” J. Biomed. Opt. 13, 024016 (2008).
[CrossRef] [PubMed]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 24007 (2007).
[CrossRef]

W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432-440 (2001).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323-345 (2005).
[CrossRef]

J. Electron. Imaging (1)

Gassan S. Abdoulaev and Andreas H. Hielscher, “Three-dimensional optical tomography with the equation of radiative transfer,” J. Electron. Imaging 12, 594-601 (2003).
[CrossRef]

Med. Phys. (2)

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (3)

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59-R97 (2009).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Phys. Rev. E (1)

W. Cong, H. Shen, A. Cong, Y. Wang, and G. Wang, “Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function,” Phys. Rev. E 76, 051913 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. U.S.A. 102, 9446-9451 (2005).
[CrossRef] [PubMed]

Radiology (1)

G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229, 566 (2003).

Other (4)

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1 (Academic, 1978).

A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).

G. Wang, E. A. Hoffman, and G. McLennan, “Systems and methods for bioluminescent computed tomographic reconstruction.” Patent disclosure filed in July 2002; U.S. provisional patent application filed in March 2003; U.S. patent application filed in March 2004.

K. E. Atkinson, Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of PA-based and DA-based source reconstructions in the numerical simulation. (a) PA-based reconstruction, (b) DA-based reconstruction with the least-squares optimization method, and (c) DA-based reconstruction with the CS-based optimization method. The small (blue online) spheres are the true light sources, and the red elements (dark areas in print) on the spheres show reconstructed results.

Fig. 2
Fig. 2

Physical phantom. (a) A photograph of the physical phantom, and (b) the cross-section through the luminescence source center, along with the four viewing directions of the CCD camera during the data acquisition process.

Fig. 3
Fig. 3

Four luminescent views of the physical phantom taken by a CCD camera in directions 90° apart. (a)–(d) Front, back, left, and right views, respectively, recorded at wavelength 550 nm .

Fig. 4
Fig. 4

Comparison of PA-based and DA-based source reconstructions in the phantom experiment. (a) The transverse section through the source reconstructed with the PA model, (b) the transverse section through the source reconstructed with the DA model using the least-squares optimization method, and (c) the counterpart reconstructed with the DA model using the CS-based optimization method. The small circles indicate the true source location.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

v L ( r , v ) + ( μ a + μ s ) L ( r , v ) = μ s 4 π L ( r , v ) p ( v , v ) d v + 1 4 π S ( r ) , r Ω ,
p ( v v ) = 1 4 π ( 1 f ) + 1 2 π f δ ( 1 v v ) ,
Φ ( r ) = Ω G ( r , r ) [ μ s ( r ) Φ ( r ) + S ( r ) ] d r r d 1 + r d Ω G ( r , r ) Φ ( r ) β n d r ,
Φ ( r ) = j = 1 N Φ ( r j ) ϕ j ( r ) .
{ Φ } = M { Φ } + B { Φ } + F { S } ,
m i , j = Ω G ( r i , r ) μ s ( r ) ϕ j ( r ) d r ,
b i , j = r d ( 1 + r d ) Ω G ( r i , r ) ϕ j ( r ) ( β n ) d r ,
f i = Ω G ( r i , r ) ϕ j ( r ) d r ,
{ Φ } = K { S } ,
{ Φ ex } = K ¯ { S } .
{ min S 0 s.t. K ¯ { S } = { Φ ex } S 0 } ,
{ min S 1 s.t. K ¯ { S } = { Φ ex } S 0 } .
{ min S 1 s.t. K ¯ { S } { Φ ex } S 0 } ε ,

Metrics