Abstract

A new model of Fourier domain optical coherence tomography (FDOCT) is proposed, valid within the first Born approximation, which takes the fluctuations of the dielectric susceptibility of tissue into account. It is shown that the spectral electrical power at the detector in the FDOCT system is proportional to the Fourier component of the spatial correlation function of the dielectric susceptibility of the tissue, proportional to the squares of the spectrum of the incident light field and the amplitude reflectance of the reference mirror. One possible application of the obtained result is to use the measured spectral data of the spatial correlation function of the dielectric susceptibility to quantitatively characterize properties of tissue.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
    [CrossRef] [PubMed]
  3. J. G. Fujimoto, “Optical coherence tomography for ultrahigh-resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
    [CrossRef] [PubMed]
  4. A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology insight: optical coherence tomography—current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2006).
    [CrossRef] [PubMed]
  5. M. E. Brezinski, “Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside?” J. Biomed. Opt. 12, 051705–1-12 (2007).
    [CrossRef] [PubMed]
  6. A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007).
    [CrossRef] [PubMed]
  7. A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt. 15, 011104–1-8 (2010).
    [CrossRef] [PubMed]
  8. A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” in Progress in Optics, Vol. 44, E. Wolf, ed. (Elsevier, 2002), Chap. 4, pp. 215–302.
    [CrossRef]
  9. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  10. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [CrossRef] [PubMed]
  11. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
    [CrossRef] [PubMed]
  12. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
    [CrossRef] [PubMed]
  13. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
    [CrossRef]
  14. P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115.
    [CrossRef]
  15. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971).
    [CrossRef] [PubMed]
  16. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
    [CrossRef] [PubMed]
  17. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [CrossRef]
  18. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  19. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
    [CrossRef]
  20. A. F. Fercher, “Inverse scattering, dispersion, and speckle in optical coherence,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 4, pp. 119–146.
    [CrossRef]
  21. G. Häusler, and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’ —new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
    [CrossRef] [PubMed]
  23. B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
    [CrossRef] [PubMed]
  24. J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 2, pp. 47–72.
    [CrossRef]
  25. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
    [CrossRef] [PubMed]
  26. W. Gao, “Spectral changes of the light produced by scattering from tissue,” Opt. Lett. 35, 862–864 (2010).
    [CrossRef] [PubMed]
  27. W. Gao, “Square law between Fourier spatial frequency of correlation function of scattering potential of tissue and spectrum of scattered light in the far zone,” J. Biomed. Opt. 15, 030502 (2010).
    [CrossRef] [PubMed]
  28. J. M. Schmitt and G. Kumar, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1251 (1997).
    [CrossRef]
  29. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999.
  30. E. Wolf, J. T. Foley, and G. Gory, “Frequency shifts of spectral lines produced by scattering from spatially random media,” J. Opt. Soc. Am. A 6, 1142–1149 (1989).
    [CrossRef]
  31. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef] [PubMed]
  32. J. D. Rogers, I. R. Capoglu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34, 1891–1893 (2009).
    [CrossRef] [PubMed]

2010 (3)

A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt. 15, 011104–1-8 (2010).
[CrossRef] [PubMed]

W. Gao, “Spectral changes of the light produced by scattering from tissue,” Opt. Lett. 35, 862–864 (2010).
[CrossRef] [PubMed]

W. Gao, “Square law between Fourier spatial frequency of correlation function of scattering potential of tissue and spectrum of scattered light in the far zone,” J. Biomed. Opt. 15, 030502 (2010).
[CrossRef] [PubMed]

2009 (2)

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef] [PubMed]

J. D. Rogers, I. R. Capoglu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34, 1891–1893 (2009).
[CrossRef] [PubMed]

2008 (3)

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 2, pp. 47–72.
[CrossRef]

A. F. Fercher, “Inverse scattering, dispersion, and speckle in optical coherence,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 4, pp. 119–146.
[CrossRef]

P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115.
[CrossRef]

2007 (2)

M. E. Brezinski, “Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside?” J. Biomed. Opt. 12, 051705–1-12 (2007).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007).
[CrossRef] [PubMed]

2006 (1)

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology insight: optical coherence tomography—current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

2002 (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” in Progress in Optics, Vol. 44, E. Wolf, ed. (Elsevier, 2002), Chap. 4, pp. 215–302.
[CrossRef]

2000 (2)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
[CrossRef]

1999 (1)

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999.

1998 (1)

G. Häusler, and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’ —new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1997 (1)

1996 (2)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1994 (2)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

1978 (1)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

1971 (1)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Aalders, M. C. G.

Andersen, P. E.

Anderson, P. E.

P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115.
[CrossRef]

Backman, V.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Bonner, R. F.

Boppart, S. A.

A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007).
[CrossRef] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999.

Bouma, B. E.

A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt. 15, 011104–1-8 (2010).
[CrossRef] [PubMed]

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef] [PubMed]

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology insight: optical coherence tomography—current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2006).
[CrossRef] [PubMed]

Brezinski, M. E.

M. E. Brezinski, “Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside?” J. Biomed. Opt. 12, 051705–1-12 (2007).
[CrossRef] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Capoglu, I. R.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Choma, M. A.

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 2, pp. 47–72.
[CrossRef]

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Faber, D. J.

Fercher, A. F.

A. F. Fercher, “Inverse scattering, dispersion, and speckle in optical coherence,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 4, pp. 119–146.
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” in Progress in Optics, Vol. 44, E. Wolf, ed. (Elsevier, 2002), Chap. 4, pp. 215–302.
[CrossRef]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Foley, J. T.

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh-resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gao, W.

W. Gao, “Spectral changes of the light produced by scattering from tissue,” Opt. Lett. 35, 862–864 (2010).
[CrossRef] [PubMed]

W. Gao, “Square law between Fourier spatial frequency of correlation function of scattering potential of tissue and spectrum of scattered light in the far zone,” J. Biomed. Opt. 15, 030502 (2010).
[CrossRef] [PubMed]

Gory, G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler, and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’ —new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” in Progress in Optics, Vol. 44, E. Wolf, ed. (Elsevier, 2002), Chap. 4, pp. 215–302.
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Izatt, J. A.

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 2, pp. 47–72.
[CrossRef]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

Jang, I. K.

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology insight: optical coherence tomography—current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2006).
[CrossRef] [PubMed]

Jrgensen, T. M.

P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115.
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Knüttel, A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Kumar, G.

Leitgeb, R.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler, and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’ —new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Low, A. F.

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology insight: optical coherence tomography—current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2006).
[CrossRef] [PubMed]

Lutomirski, R. F.

Marks, D. L.

A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007).
[CrossRef] [PubMed]

Nguryen, F. T.

A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007).
[CrossRef] [PubMed]

Oldenberg, A. L.

A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007).
[CrossRef] [PubMed]

Owen, G. M.

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rogers, J. D.

Schmitt, J. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Suter, M. J.

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tanaka, A.

A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt. 15, 011104–1-8 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt. 15, 011104–1-8 (2010).
[CrossRef] [PubMed]

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef] [PubMed]

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology insight: optical coherence tomography—current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2006).
[CrossRef] [PubMed]

Thrane, L.

P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115.
[CrossRef]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
[CrossRef]

Tycho, A.

P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115.
[CrossRef]

Vakoc, B. J.

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef] [PubMed]

van der Meer, F. J.

van Leeuwen, T. G.

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999.

E. Wolf, J. T. Foley, and G. Gory, “Frequency shifts of spectral lines produced by scattering from spatially random media,” J. Opt. Soc. Am. A 6, 1142–1149 (1989).
[CrossRef]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Yun, S.-H.

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef] [PubMed]

Yura, H. T.

P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115.
[CrossRef]

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
[CrossRef]

R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971).
[CrossRef] [PubMed]

Zysk, A. M.

A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

Curr. Opin. Biotechnol. (1)

B. E. Bouma, S.-H. Yun, B. J. Vakoc, M. J. Suter, and G. J. Tearney, “Fourier-domain optical coherence tomography: recent advances toward clinical utility,” Curr. Opin. Biotechnol. 20, 111–118 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (7)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef]

G. Häusler, and M. W. Lindner, “’Coherence radar’ and ‘spectral radar’ —new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

W. Gao, “Square law between Fourier spatial frequency of correlation function of scattering potential of tissue and spectrum of scattered light in the far zone,” J. Biomed. Opt. 15, 030502 (2010).
[CrossRef] [PubMed]

M. E. Brezinski, “Applications of optical coherence tomography to cardiac and musculoskeletal diseases: bench to bedside?” J. Biomed. Opt. 12, 051705–1-12 (2007).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguryen, A. L. Oldenberg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403–1-21 (2007).
[CrossRef] [PubMed]

A. Tanaka, G. J. Tearney, and B. E. Bouma, “Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography,” J. Biomed. Opt. 15, 011104–1-8 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh-resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

Nat. Clin. Pract. Cardiovasc. Med. (1)

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology insight: optical coherence tomography—current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2006).
[CrossRef] [PubMed]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Opt. Commun. (2)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (6)

A. F. Fercher and C. K. Hitzenberger, “Optical coherence tomography,” in Progress in Optics, Vol. 44, E. Wolf, ed. (Elsevier, 2002), Chap. 4, pp. 215–302.
[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

P. E. Anderson, T. M. Jrgensen, L. Thrane, A. Tycho, and H. T. Yura, “Modeling light-tissue interaction in optical coherence tomography systems,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 3, pp. 73–115.
[CrossRef]

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 2, pp. 47–72.
[CrossRef]

A. F. Fercher, “Inverse scattering, dispersion, and speckle in optical coherence,” in Optical Coherence Tomography—Technology and Applications, W.Drexler and J.G.Fujimoto, eds. (Springer, 2008), Chap. 4, pp. 119–146.
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Illustration of the notation.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

U ( i ) ( r , ω ) = a ( ω ) exp ( i k s 0 r ) ,
U s ( ) ( r , ω ) = a ( ω ) ( ω c ) 2 e j k s r r η ̃ [ K , ω ] ,
η ( r , ω ) = [ n 2 ( r , ω ) 1 ] 4 π
η ̃ ( K , ω ) = V ( r ) η ( r , ω ) exp ( j K r ) d 3 r
U s ( ) ( r , ω ) = a ( ω ) e j k s 0 r r ( ω c ) 2 V ( r ) μ ( r , ω ) exp [ j K ( r r ) ] d 3 r .
U R ( r , ω ) = a R a ( ω ) e j k s 0 r exp [ j K ( r r 0 ) ] ,
i d ( K ) = κ a R ρ Re { U R * U S ( ) } = κ ρ a R S ( i ) ( ω ) ( ω c ) 2 1 l 2 Re { exp [ j K ( r r 0 ) ] η ̃ ( K , ω ) } ,
C η ( r 1 , r 2 , ω ) = η * ( r 1 , ω ) η ( r 2 , ω ) ,
η ̃ ( K 1 , ω ) η ̃ * ( K 2 , ω ) = C ̃ η ( K 1 , K 2 , ω ) = V V C η ( r 1 , r 2 , ω ) exp [ j ( K 2 r 2 K 1 r 1 ) ] d 3 r 1 d 3 r 2 .
η ( r , ω ) = ( 1 4 π ) [ n 2 ( r , ω ) 1 ] = ( 1 4 π ) n ( r , ω ) 2 + 2 n ( r , ω ) δ n ( r , ω ) 1 ,
C η ( r 1 , r 2 , ω ) = ( 1 16 π 2 ) ( n 4 2 n 2 + 1 + 4 n 2 δ n ( r 1 , ω ) δ n ( r 2 , ω ) ) ,
C ̃ η ( K , ω ) = [ 1 ( 4 π ) 2 ] n 2 Φ ( K ) ,
Φ ( K ) = 4 π σ n 2 L 0 2 ( m 1 ) ( 1 + K 2 L 0 2 ) m ,
Φ ( K ) K n , n > 3 as K 0 .
Φ ( K ) K n , n > 5 as K 0 .
Φ ( K ) = 4 π σ n 2 L 0 2 ( m 1 ) ( 1 m K 2 L 0 2 ) .
C η ( r 1 , r 2 , ω ) = C η ( r 1 r 2 , ω ) , when r 1 V and r 2 V
= 0 , otherwise .
s 2 s 1 = s .
C ̃ η [ k ( s s 0 ) , k ( s s 0 ) , ω ] = V V C η ( r 2 r 1 , ω ) exp [ j k ( s s 0 ) ( r 2 r 1 ) ] d 3 r 1 d 3 r 2 .
r = ( r 2 r 1 ) , r = ( r 2 + r 1 ) 2 ,
η ̃ * ( K 1 , ω ) η ̃ ( K 2 , ω ) V C ̃ η ( K , ω ) ,
C ̃ η ( K , ω ) = V C η ( r , ω ) exp [ j K r ] d 3 r .
S ( K ) i d 2 ( K ) = ( κ ρ a R l 2 ) 2 [ S ( i ) ( ω ) ] 2 ( ω c ) 4 [ η ̃ * ( K , ω ) η ̃ ( K , ω ) ] .
S ¯ ( K ) = ( κ ρ a R l 2 ) 2 ( ω c ) 4 [ S ( i ) ( ω ) ] 2 η * ( K , ω ) η ( K , ω ) ,
S ¯ ( K ) = V ( κ ρ a R l 2 ) 2 ( ω c ) 4 [ S ( i ) ( ω ) ] 2 C ̃ η ( K , ω ) .
θ 2 = 90 ° α 2 ,
sin ( θ 2 ) = cos ( α 2 ) ,
K = | K | = | k ( s s 0 ) | = 2 k sin ( θ 2 ) = 2 k cos ( α 2 ) .

Metrics