Abstract

Observations of sodium density variability in the upper mesosphere/lower thermosphere, obtained using a high-resolution lidar system, show rapid fluctuations in the sodium centroid altitude. The temporal power spectrum extends above 1 Hz and is well-fit by a power law having a slope that is 1.95±0.12. These fluctuations produce focus errors in adaptive optics systems employing continuous-wave sodium laser guide stars, which can be significant for large-aperture telescopes. For a 30 m aperture diameter, the associated rms wavefront error is approximately 4 nm per meter of altitude change and increases as the square of the aperture diameter. The vertical velocity of the sodium centroid altitude is found to be 23ms1 on a 1 s time scale. If these high-frequency fluctuations arise primarily from advection of horizontal structure by the mesospheric wind, our data imply that variations in the sodium centroid altitude on the order of tens of meters occur over the horizontal scales spanned by proposed laser guide star asterisms. This leads to substantial differential focus errors (107  nm over a 1 arc min separation with a 30 m aperture diameter) that may impact the performance of wide-field adaptive optics systems. Short-lasting and narrow sodium density enhancements, more than 1 order of magnitude above the local sodium density, occur due to advection of meteor trails. These have the ability to change the sodium centroid altitude by as much as 1 km in less than 1 s, which could result in temporary disruption of adaptive optics systems.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. C. Plane, “Atmospheric chemistry of meteoric metals,” Chem. Rev. (Washington, D.C.) 103, 4963–4984 (2003).
    [CrossRef]
  2. J. M. Beckers, “Adaptive optics for astronomy—Principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
    [CrossRef]
  3. G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
    [CrossRef]
  4. D. S. Davis, P. Hickson, G. Herriot, and C.-Y. She, “Temporal variability of the telluric sodium layer,” Opt. Lett. 31, 3369–3371 (2006).
    [CrossRef] [PubMed]
  5. R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
    [CrossRef]
  6. T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (1–11) (2009).
    [CrossRef]
  7. T. Pfrommer, P. Hickson, C. She, and J. D. Vance, “High-resolution lidar experiment for the Thirty Meter Telescope,” Proc. SPIE 7015, 70154Y (2008).
    [CrossRef]
  8. P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
    [CrossRef]
  9. C. Tilgner and U. von Zahn, “Average properties of the sodium density distribution as observed at 69degN latitude in winter,” J. Geophys. Res. 93, 8439–8454 (1988).
    [CrossRef]
  10. K. H. Fricke and U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  11. C. S. Gardner, D. G. Voelz, C. F. Sechrist, Jr., and A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois. I—Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
    [CrossRef]
  12. T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
    [CrossRef]
  13. C. S. Gardner and J. D. Shelton, “Density response of neutral atmospheric layers to gravity wave perturbations,”J. Geophys. Res. 90, 1745–1754 (1985).
    [CrossRef]
  14. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (1–64) (2003).
    [CrossRef]
  15. Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
    [CrossRef]
  16. P. Brown, D. K. Wong, R. J. Weryk, and P. Wiegert, “A meteoroid stream survey using the Canadian Meteor Orbit Radar: II: Identification of minor showers using a 3D wavelet transform,” Icarus 207, 66–81 (2010).
    [CrossRef]
  17. T. J. Kane and C. S. Gardner, “Lidar observations of the meteoric deposition of mesospheric metals,” Science 259, 1297–1300 (1993).
    [CrossRef] [PubMed]
  18. B. R. Clemesha, “Sporadic neutral metal layers in the mesosphere and lower thermosphere,” J. Atmos. Terr. Phys. 57, 725–736 (1995).
    [CrossRef]
  19. S. Vaughan, “A Bayesian test for periodic signals in red noise,” Mon. Not. R. Astron. Soc. 402, 307–320 (2010).
    [CrossRef]
  20. H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
    [CrossRef]
  21. M. P. Hickey and J. M. C. Plane, “A chemical-dynamical model of wave-driven sodium fluctuations,” Geophys. Res. Lett. 22, 2861–2864 (1995).
    [CrossRef]
  22. D. C. Senft, C. A. Hostetler, and C. S. Gardner, “Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Areceibo during early April 1989,” J. Atmos. Terr. Phys. 55, 425–439 (1993).
    [CrossRef]
  23. C. S. Gardner, “Theoretical models for gravity wave horizontal wave number spectra: Effects of wave field anisotropies,” J. Geophys. Res. 103, 6417–6425 (1998).
    [CrossRef]
  24. D. C. Fritts, R. C. Blanchard, and L. Coy, “Gravity wave structure between 60 and 90 km inferred from Space Shuttle reentry data,” J. Atmos. Sci. 46, 423–434 (1989).
    [CrossRef]
  25. R. E. Bills and C. S. Gardner, “Lidar observations of the mesopause region temperature structure at Urbana,” J. Geophys. Res. 98, 1011–1021 (1993).
    [CrossRef]
  26. D. C. Fritts and T. E. VanZandt, “The effects of Doppler shifting on the frequency spectra of atmospheric gravity waves,” J. Geophys. Res. 92, 9723–9732 (1987).
    [CrossRef]
  27. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19, 281–376 (1981).
    [CrossRef]

2010 (3)

R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[CrossRef]

P. Brown, D. K. Wong, R. J. Weryk, and P. Wiegert, “A meteoroid stream survey using the Canadian Meteor Orbit Radar: II: Identification of minor showers using a 3D wavelet transform,” Icarus 207, 66–81 (2010).
[CrossRef]

S. Vaughan, “A Bayesian test for periodic signals in red noise,” Mon. Not. R. Astron. Soc. 402, 307–320 (2010).
[CrossRef]

2009 (1)

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (1–11) (2009).
[CrossRef]

2008 (3)

T. Pfrommer, P. Hickson, C. She, and J. D. Vance, “High-resolution lidar experiment for the Thirty Meter Telescope,” Proc. SPIE 7015, 70154Y (2008).
[CrossRef]

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

2007 (1)

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

2006 (2)

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

D. S. Davis, P. Hickson, G. Herriot, and C.-Y. She, “Temporal variability of the telluric sodium layer,” Opt. Lett. 31, 3369–3371 (2006).
[CrossRef] [PubMed]

2003 (2)

J. M. C. Plane, “Atmospheric chemistry of meteoric metals,” Chem. Rev. (Washington, D.C.) 103, 4963–4984 (2003).
[CrossRef]

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (1–64) (2003).
[CrossRef]

1998 (2)

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

C. S. Gardner, “Theoretical models for gravity wave horizontal wave number spectra: Effects of wave field anisotropies,” J. Geophys. Res. 103, 6417–6425 (1998).
[CrossRef]

1995 (2)

M. P. Hickey and J. M. C. Plane, “A chemical-dynamical model of wave-driven sodium fluctuations,” Geophys. Res. Lett. 22, 2861–2864 (1995).
[CrossRef]

B. R. Clemesha, “Sporadic neutral metal layers in the mesosphere and lower thermosphere,” J. Atmos. Terr. Phys. 57, 725–736 (1995).
[CrossRef]

1993 (4)

T. J. Kane and C. S. Gardner, “Lidar observations of the meteoric deposition of mesospheric metals,” Science 259, 1297–1300 (1993).
[CrossRef] [PubMed]

D. C. Senft, C. A. Hostetler, and C. S. Gardner, “Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Areceibo during early April 1989,” J. Atmos. Terr. Phys. 55, 425–439 (1993).
[CrossRef]

R. E. Bills and C. S. Gardner, “Lidar observations of the mesopause region temperature structure at Urbana,” J. Geophys. Res. 98, 1011–1021 (1993).
[CrossRef]

J. M. Beckers, “Adaptive optics for astronomy—Principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

1989 (1)

D. C. Fritts, R. C. Blanchard, and L. Coy, “Gravity wave structure between 60 and 90 km inferred from Space Shuttle reentry data,” J. Atmos. Sci. 46, 423–434 (1989).
[CrossRef]

1988 (1)

C. Tilgner and U. von Zahn, “Average properties of the sodium density distribution as observed at 69degN latitude in winter,” J. Geophys. Res. 93, 8439–8454 (1988).
[CrossRef]

1987 (1)

D. C. Fritts and T. E. VanZandt, “The effects of Doppler shifting on the frequency spectra of atmospheric gravity waves,” J. Geophys. Res. 92, 9723–9732 (1987).
[CrossRef]

1986 (1)

C. S. Gardner, D. G. Voelz, C. F. Sechrist, Jr., and A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois. I—Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

1985 (2)

K. H. Fricke and U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

C. S. Gardner and J. D. Shelton, “Density response of neutral atmospheric layers to gravity wave perturbations,”J. Geophys. Res. 90, 1745–1754 (1985).
[CrossRef]

1981 (1)

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19, 281–376 (1981).
[CrossRef]

Alexander, M. J.

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (1–64) (2003).
[CrossRef]

Beckers, J. M.

J. M. Beckers, “Adaptive optics for astronomy—Principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

Bills, R. E.

R. E. Bills and C. S. Gardner, “Lidar observations of the mesopause region temperature structure at Urbana,” J. Geophys. Res. 98, 1011–1021 (1993).
[CrossRef]

Blanchard, R. C.

D. C. Fritts, R. C. Blanchard, and L. Coy, “Gravity wave structure between 60 and 90 km inferred from Space Shuttle reentry data,” J. Atmos. Sci. 46, 423–434 (1989).
[CrossRef]

Bonaccini Calia, D.

R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[CrossRef]

Borovicka, J.

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

Brown, P.

P. Brown, D. K. Wong, R. J. Weryk, and P. Wiegert, “A meteoroid stream survey using the Canadian Meteor Orbit Radar: II: Identification of minor showers using a 3D wavelet transform,” Icarus 207, 66–81 (2010).
[CrossRef]

Budker, D.

R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[CrossRef]

Cabanac, R.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Ceplecha, Z.

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

Chakravarty, S. C.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Chandra, H.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Clare, R.

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

Clemesha, B. R.

B. R. Clemesha, “Sporadic neutral metal layers in the mesosphere and lower thermosphere,” J. Atmos. Terr. Phys. 57, 725–736 (1995).
[CrossRef]

Coy, L.

D. C. Fritts, R. C. Blanchard, and L. Coy, “Gravity wave structure between 60 and 90 km inferred from Space Shuttle reentry data,” J. Atmos. Sci. 46, 423–434 (1989).
[CrossRef]

Crotts, A.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Das, S. R.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Das, U.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Datta, J.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Davis, D. S.

de Lapparent, V.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Elford, W. G.

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

Ellerbroek, B.

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

Fricke, K. H.

K. H. Fricke and U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Fritts, D. C.

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (1–64) (2003).
[CrossRef]

D. C. Fritts, R. C. Blanchard, and L. Coy, “Gravity wave structure between 60 and 90 km inferred from Space Shuttle reentry data,” J. Atmos. Sci. 46, 423–434 (1989).
[CrossRef]

D. C. Fritts and T. E. VanZandt, “The effects of Doppler shifting on the frequency spectra of atmospheric gravity waves,” J. Geophys. Res. 92, 9723–9732 (1987).
[CrossRef]

Garcia, R.

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

Gardner, C. S.

C. S. Gardner, “Theoretical models for gravity wave horizontal wave number spectra: Effects of wave field anisotropies,” J. Geophys. Res. 103, 6417–6425 (1998).
[CrossRef]

R. E. Bills and C. S. Gardner, “Lidar observations of the mesopause region temperature structure at Urbana,” J. Geophys. Res. 98, 1011–1021 (1993).
[CrossRef]

T. J. Kane and C. S. Gardner, “Lidar observations of the meteoric deposition of mesospheric metals,” Science 259, 1297–1300 (1993).
[CrossRef] [PubMed]

D. C. Senft, C. A. Hostetler, and C. S. Gardner, “Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Areceibo during early April 1989,” J. Atmos. Terr. Phys. 55, 425–439 (1993).
[CrossRef]

C. S. Gardner, D. G. Voelz, C. F. Sechrist, Jr., and A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois. I—Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

C. S. Gardner and J. D. Shelton, “Density response of neutral atmospheric layers to gravity wave perturbations,”J. Geophys. Res. 90, 1745–1754 (1985).
[CrossRef]

Gromoll, S.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Hackenberg, W.

R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[CrossRef]

Hawkes, R. L.

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

Herriot, G.

D. S. Davis, P. Hickson, G. Herriot, and C.-Y. She, “Temporal variability of the telluric sodium layer,” Opt. Lett. 31, 3369–3371 (2006).
[CrossRef] [PubMed]

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

Hickey, M. P.

M. P. Hickey and J. M. C. Plane, “A chemical-dynamical model of wave-driven sodium fluctuations,” Geophys. Res. Lett. 22, 2861–2864 (1995).
[CrossRef]

Hickson, P.

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (1–11) (2009).
[CrossRef]

T. Pfrommer, P. Hickson, C. She, and J. D. Vance, “High-resolution lidar experiment for the Thirty Meter Telescope,” Proc. SPIE 7015, 70154Y (2008).
[CrossRef]

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

D. S. Davis, P. Hickson, G. Herriot, and C.-Y. She, “Temporal variability of the telluric sodium layer,” Opt. Lett. 31, 3369–3371 (2006).
[CrossRef] [PubMed]

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

Higbie, J. M.

R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[CrossRef]

Holzlohner, R.

R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[CrossRef]

Hostetler, C. A.

D. C. Senft, C. A. Hostetler, and C. S. Gardner, “Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Areceibo during early April 1989,” J. Atmos. Terr. Phys. 55, 425–439 (1993).
[CrossRef]

Johnson, B.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Kane, T. J.

T. J. Kane and C. S. Gardner, “Lidar observations of the meteoric deposition of mesospheric metals,” Science 259, 1297–1300 (1993).
[CrossRef] [PubMed]

Krueger, D. A.

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

Lanzetta, K. M.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Liu, H.

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

Looze, D.

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

Misra, R. N.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Mulrooney, M. K.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Narayana Rao, D.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Patra, A. K.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Pfrommer, T.

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (1–11) (2009).
[CrossRef]

T. Pfrommer, P. Hickson, C. She, and J. D. Vance, “High-resolution lidar experiment for the Thirty Meter Telescope,” Proc. SPIE 7015, 70154Y (2008).
[CrossRef]

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Plane, J. M. C.

J. M. C. Plane, “Atmospheric chemistry of meteoric metals,” Chem. Rev. (Washington, D.C.) 103, 4963–4984 (2003).
[CrossRef]

M. P. Hickey and J. M. C. Plane, “A chemical-dynamical model of wave-driven sodium fluctuations,” Geophys. Res. Lett. 22, 2861–2864 (1995).
[CrossRef]

Porubcan, V.

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

Revelle, D. O.

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

Roble, R. G.

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

Rochester, S. M.

R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[CrossRef]

Roddier, F.

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19, 281–376 (1981).
[CrossRef]

Sassi, F.

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

Schmidt, H.

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

Sechrist, C. F.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, Jr., and A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois. I—Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

Segal, A. C.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, Jr., and A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois. I—Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

Senft, D. C.

D. C. Senft, C. A. Hostetler, and C. S. Gardner, “Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Areceibo during early April 1989,” J. Atmos. Terr. Phys. 55, 425–439 (1993).
[CrossRef]

She, C.

T. Pfrommer, P. Hickson, C. She, and J. D. Vance, “High-resolution lidar experiment for the Thirty Meter Telescope,” Proc. SPIE 7015, 70154Y (2008).
[CrossRef]

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

She, C. -Y.

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (1–11) (2009).
[CrossRef]

D. S. Davis, P. Hickson, G. Herriot, and C.-Y. She, “Temporal variability of the telluric sodium layer,” Opt. Lett. 31, 3369–3371 (2006).
[CrossRef] [PubMed]

Shelton, J. D.

C. S. Gardner and J. D. Shelton, “Density response of neutral atmospheric layers to gravity wave perturbations,”J. Geophys. Res. 90, 1745–1754 (1985).
[CrossRef]

Šimek, M.

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

Sinha, H. S. S.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Sivanandam, S.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Tilgner, C.

C. Tilgner and U. von Zahn, “Average properties of the sodium density distribution as observed at 69degN latitude in winter,” J. Geophys. Res. 93, 8439–8454 (1988).
[CrossRef]

Truax, B.

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Vance, J. D.

T. Pfrommer, P. Hickson, C. She, and J. D. Vance, “High-resolution lidar experiment for the Thirty Meter Telescope,” Proc. SPIE 7015, 70154Y (2008).
[CrossRef]

VanZandt, T. E.

D. C. Fritts and T. E. VanZandt, “The effects of Doppler shifting on the frequency spectra of atmospheric gravity waves,” J. Geophys. Res. 92, 9723–9732 (1987).
[CrossRef]

Vaughan, S.

S. Vaughan, “A Bayesian test for periodic signals in red noise,” Mon. Not. R. Astron. Soc. 402, 307–320 (2010).
[CrossRef]

Venkateswara Rao, N.

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Véran, J.

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

Voelz, D. G.

C. S. Gardner, D. G. Voelz, C. F. Sechrist, Jr., and A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois. I—Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

von Zahn, U.

C. Tilgner and U. von Zahn, “Average properties of the sodium density distribution as observed at 69degN latitude in winter,” J. Geophys. Res. 93, 8439–8454 (1988).
[CrossRef]

K. H. Fricke and U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Weryk, R. J.

P. Brown, D. K. Wong, R. J. Weryk, and P. Wiegert, “A meteoroid stream survey using the Canadian Meteor Orbit Radar: II: Identification of minor showers using a 3D wavelet transform,” Icarus 207, 66–81 (2010).
[CrossRef]

Wiegert, P.

P. Brown, D. K. Wong, R. J. Weryk, and P. Wiegert, “A meteoroid stream survey using the Canadian Meteor Orbit Radar: II: Identification of minor showers using a 3D wavelet transform,” Icarus 207, 66–81 (2010).
[CrossRef]

Wong, D. K.

P. Brown, D. K. Wong, R. J. Weryk, and P. Wiegert, “A meteoroid stream survey using the Canadian Meteor Orbit Radar: II: Identification of minor showers using a 3D wavelet transform,” Icarus 207, 66–81 (2010).
[CrossRef]

Yuan, T.

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

Ann. Geophys. (1)

H. Chandra, H. S. S. Sinha, U. Das, R. N. Misra, S. R. Das, J. Datta, S. C. Chakravarty, A. K. Patra, N. Venkateswara Rao, and D. Narayana Rao, “First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region,” Ann. Geophys. 26, 2725–2738 (2008).
[CrossRef]

Annu. Rev. Astron. Astrophys. (1)

J. M. Beckers, “Adaptive optics for astronomy—Principles, performance, and applications,” Annu. Rev. Astron. Astrophys. 31, 13–62 (1993).
[CrossRef]

Astron. Astrophys. (1)

R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of cw sodium laser guide star efficiency,” Astron. Astrophys. 510, A20 (2010).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

J. M. C. Plane, “Atmospheric chemistry of meteoric metals,” Chem. Rev. (Washington, D.C.) 103, 4963–4984 (2003).
[CrossRef]

Geophys. Res. Lett. (2)

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 36, L15831 (1–11) (2009).
[CrossRef]

M. P. Hickey and J. M. C. Plane, “A chemical-dynamical model of wave-driven sodium fluctuations,” Geophys. Res. Lett. 22, 2861–2864 (1995).
[CrossRef]

Icarus (1)

P. Brown, D. K. Wong, R. J. Weryk, and P. Wiegert, “A meteoroid stream survey using the Canadian Meteor Orbit Radar: II: Identification of minor showers using a 3D wavelet transform,” Icarus 207, 66–81 (2010).
[CrossRef]

J. Atmos. Sci. (1)

D. C. Fritts, R. C. Blanchard, and L. Coy, “Gravity wave structure between 60 and 90 km inferred from Space Shuttle reentry data,” J. Atmos. Sci. 46, 423–434 (1989).
[CrossRef]

J. Atmos. Terr. Phys. (3)

B. R. Clemesha, “Sporadic neutral metal layers in the mesosphere and lower thermosphere,” J. Atmos. Terr. Phys. 57, 725–736 (1995).
[CrossRef]

D. C. Senft, C. A. Hostetler, and C. S. Gardner, “Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Areceibo during early April 1989,” J. Atmos. Terr. Phys. 55, 425–439 (1993).
[CrossRef]

K. H. Fricke and U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Geophys. Res. (7)

C. S. Gardner, D. G. Voelz, C. F. Sechrist, Jr., and A. C. Segal, “Lidar studies of the nighttime sodium layer over Urbana, Illinois. I—Seasonal and nocturnal variations,” J. Geophys. Res. 91, 13659–13673 (1986).
[CrossRef]

T. Yuan, C. She, D. A. Krueger, F. Sassi, R. Garcia, R. G. Roble, H. Liu, and H. Schmidt, “Climatology of mesopause region temperature, zonal wind, and meridional wind over Fort Collins, Colorado (41 °n, 105 °w), and comparison with model simulations,” J. Geophys. Res. 113, D03105 (1–11) (2008).
[CrossRef]

C. S. Gardner and J. D. Shelton, “Density response of neutral atmospheric layers to gravity wave perturbations,”J. Geophys. Res. 90, 1745–1754 (1985).
[CrossRef]

C. S. Gardner, “Theoretical models for gravity wave horizontal wave number spectra: Effects of wave field anisotropies,” J. Geophys. Res. 103, 6417–6425 (1998).
[CrossRef]

R. E. Bills and C. S. Gardner, “Lidar observations of the mesopause region temperature structure at Urbana,” J. Geophys. Res. 98, 1011–1021 (1993).
[CrossRef]

D. C. Fritts and T. E. VanZandt, “The effects of Doppler shifting on the frequency spectra of atmospheric gravity waves,” J. Geophys. Res. 92, 9723–9732 (1987).
[CrossRef]

C. Tilgner and U. von Zahn, “Average properties of the sodium density distribution as observed at 69degN latitude in winter,” J. Geophys. Res. 93, 8439–8454 (1988).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

S. Vaughan, “A Bayesian test for periodic signals in red noise,” Mon. Not. R. Astron. Soc. 402, 307–320 (2010).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

G. Herriot, P. Hickson, B. Ellerbroek, J. Véran, C. She, R. Clare, and D. Looze, “Focus errors from tracking sodium layer altitude variations with laser guide star adaptive optics for the Thirty Meter Telescope,” Proc. SPIE 6272, 62721l (2006).
[CrossRef]

T. Pfrommer, P. Hickson, C. She, and J. D. Vance, “High-resolution lidar experiment for the Thirty Meter Telescope,” Proc. SPIE 7015, 70154Y (2008).
[CrossRef]

Prog. Opt. (1)

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” Prog. Opt. 19, 281–376 (1981).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

P. Hickson, T. Pfrommer, R. Cabanac, A. Crotts, B. Johnson, V. de Lapparent, K. M. Lanzetta, S. Gromoll, M. K. Mulrooney, S. Sivanandam, and B. Truax, “The Large Zenith Telescope: A 6 m liquid-mirror telescope,” Publ. Astron. Soc. Pac. 119, 444–455 (2007).
[CrossRef]

Rev. Geophys. (1)

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, 1003 (1–64) (2003).
[CrossRef]

Science (1)

T. J. Kane and C. S. Gardner, “Lidar observations of the meteoric deposition of mesospheric metals,” Science 259, 1297–1300 (1993).
[CrossRef] [PubMed]

Space Sci. Rev. (1)

Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, “Meteor phenomena and bodies,” Space Sci. Rev. 84, 327–471 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sodium density evolution with the sodium layer advecting across the collimated vertical laser beam. The intensity in the color scheme is photon counts per (1.3 s/75 m) bin and is given as a function of altitude and time. The four gaps in the data result from automatic system shutdowns caused by over-flying aircrafts. The received flux has been fit with a fifth order polynomial in time and each single sodium profile is scaled to remove the residuals. This corrects short-term variations in laser power (due primarily to temperature cycling in the laser cooling system) while long-term changes, which can be attributed to sodium density variations, are preserved. The centroid altitude is identified by a white line, superimposed on the map.

Fig. 2
Fig. 2

Temporal one-sided PSD of centroid altitude. The spectrum is fit well by a power law of index −1.97 and amplitude of 31 m 2 Hz 1 plus a constant photon noise floor. The figure shows the noise-subtracted spectrum, filtered with a logarithmic boxcar having a reciprocal width ν / Δ ν = 128 . The noise floor is indicated by a horizontal dashed line. The vertical dashed line indicates the Brunt–Väisälä frequency. No systematic deviations from a power law are evident over the 4–5 orders of magnitude range of the spectrum. The small resonance seen at 5.5 and 11 Hz is believed to arise from instrumental effects and the apparent flattening above a few hertz is an artifact caused by negative values not appearing on the plot. Superimposed in a light gray dashed line is a low-frequency spectrum, extending up to 10 2.4   Hz , derived using data from the Colorado State University lidar [4].

Fig. 3
Fig. 3

Meteor trails. Spikes in the sodium density occur when meteor ablation trails drift across the laser beam. The figure shows sodium density (vertical scale) as a function of altitude (right scale) and time (left scale) for a typical night.

Fig. 4
Fig. 4

Strong meteor trail occurring 6   km below the sodium centroid altitude. The intensity map represents number of photons per (60 ms/10 m) ms bin. Its effect on the centroid altitude can be seen in the lower plot. Superimposed on the centroid altitude plot is a low-pass filtered time series (dashed line). Meteor ablation temporarily changes the centroid altitude by 0.6 km (beginning of event) to 0.8 km (end of event) in approximately 1 s.

Tables (2)

Tables Icon

Table 1 Rms Centroid Velocities ( ms 1 ) for 1 and 10 s Bandwidths and a Representative Range of Power Spectrum Parameters

Tables Icon

Table 2 Rms Sodium Centroid Altitude Variation for a 1 arc min LGS Separation, for a Representative Range of Power Spectrum Parameters and Wind Velocities a

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

a ( x , y , t ) = 1 N ( x , y , t ) 0 n ( x , y , z , t ) z d z ,
N ( x , y , t ) = 0 n ( x , y , z , t ) d z
σ wfe = D 2   sin   ζ 16 3 ( a h ) 2 Δ a .
P a ( ν ) = α ν β + γ ,
p [ D ( ν ) P a ( ν ) ] = 1 P a ( ν ) exp ( D ( ν ) P a ( ν ) ) .
P v ( ν ) = 4 π 2 ν 2 P a ( ν ) ,
σ v 2 ( T ) = 1 π 2 T 2 0 P v ( ν ) [ sin ( π ν T ) ] 2 ν 2 d ν = { 2 ( 2 π ) β 1 α Γ ( β + 1 ) sin ( π β / 2 ) T β 3 , if   3 < β < 1 2 π 2 α T 1 , if   β = 2. }
z ( x , y , z , t ) = A   exp [ z / 2 H + i ( ω t k x l y m z ) ] ,
a ( x , y , t ) = A   exp [ a / 2 H + i ( ω t k x l y ) ] 1 N 0 n 0 ( z ) exp [ ( z a ) / 2 H i m z ] d z .
P a ( k , l , m , ω ) = G ( m ) P z ( k , l , m , ω ) ,
G ( m ) = | 1 N 0 n 0 ( z ) exp [ ( z a ) / 2 H i m z ] d z | 2
G ( m ) = exp ( σ s 2 / 4 H 2 σ s 2 m 2 ) .
P a ( ω ) = G ( m ) P z ( k , l , m , ω ) d k d l d m .
P a ( k ) = 0 d ω G ( m ) P z ( k , l , m , ω ) d l d m .
ω 2 = ω 0 2 ( k 2 + l 2 ) k 2 + l 2 + m 2 ,
D a ( x ) = { 2 ( 2 π ) β 1 Γ ( β + 1 ) sin ( π β / 2 ) v ¯ β + 1 α x β 1 , 3 < β < 1 , 2 π 2 v ¯ 1 α | x | , β = 2 , }
n ( x , z ) = n ( x , z ) n ( x , z ) ,
a = 1 N 0 n z d z ,
a = 1 N 0 n z d z a N 0 n d z = 1 N 0 n ( z a ) d z .
D a ( x ) = [ a ( 0 ) a ( x ) ] 2 .
D a ( x ) = 1 N 2 0 d z 0 d w ( z a ) ( w a ) [ n ( 0 , z ) n ( x , z ) ] [ n ( 0 , w ) n ( x , w ) ] .
[ n ( 0 , z ) n ( x , z ) ] [ n ( 0 , w ) n ( x , w ) ] = D ρ ( , z ) δ ( z w ) .
D a ( x ) = 1 N 2 0 D ρ ( x , z ) ( z a ) 2 d z .
D a ( t ) = 1 N 2 0 D ρ [ v ( z ) t ] ( z a ) 2 d z .
D a ( t ) = 2 [ C a ( 0 ) C a ( t ) ] .
C a ( t ) = 1 2 P a ( ν ) cos ( 2 π ν t ) d t .
D a ( t ) = 2 0 P a ( ν ) [ 1 cos ( 2 π ν t ) ] d ν .
P a ( ν ) = α ν β     ( 3 < β < 1 ) ,
D a ( t ) = { 2 ( 2 π ) β 1 Γ ( β + 1 ) sin ( π β / 2 ) α t β 1 , 3 < β < 1 2 π 2 α | t | , β = 2. }
D ρ ( x ) = C ρ 2 ( z ) x β 1 ,
D a ( x ) = ξ x β 1 ,
D a ( t ) = γ t β 1 = ξ v ¯ β 1 t β 1 ,
ξ = 1 N 2 0 C ρ 2 ( z ) ( z a ) 2 d z ,
γ = 1 N 2 0 C ρ 2 ( z ) v ( z ) β 1 ( z a ) 2 d z ,
v ¯ ( γ / ξ ) β + 1 .
ξ = { 2 ( 2 π ) β 1 Γ ( β + 1 ) sin ( π β / 2 ) v ¯ β + 1 α , 3 < β < 1 2 π 2 v ¯ 1 α , β = 2. }

Metrics