Abstract

A binocular adaptive optics visual simulator has been devised for the study of stereopsis and of binocular vision in general. The apparatus is capable of manipulating the aberrations of each eye separately while subjects perform visual tests. The correcting device is a liquid-crystal-on-silicon spatial light modulator permitting the control of aberrations in the two eyes of the observer simultaneously in open loop. The apparatus can be operated as an electro-optical binocular phoropter with two micro-displays projecting different scenes to each eye. Stereo-acuity tests (three-needle test and random-dot stereograms) have been programmed for exploring the performance of the instrument. As an example, stereo-acuity has been measured in two subjects in the presence of defocus and/or trefoil, showing a complex relationship between the eye’s optical quality and stereopsis. This instrument might serve for a better understanding of the relationship of binocular vision and stereopsis performance and the eye’s aberrations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
    [CrossRef]
  2. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  3. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
    [CrossRef]
  4. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
    [CrossRef]
  5. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  6. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  7. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  8. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400–409 (2005).
    [CrossRef] [PubMed]
  9. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8to1070 nm,” Opt. Express 16, 21199–21208 (2008).
    [CrossRef] [PubMed]
  10. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
    [CrossRef]
  11. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]
  12. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
    [CrossRef]
  13. Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002).
    [CrossRef] [PubMed]
  14. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46, 3009–3016 (2006).
    [CrossRef] [PubMed]
  15. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  16. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  17. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
    [CrossRef] [PubMed]
  18. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
    [CrossRef]
  19. E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
    [CrossRef] [PubMed]
  20. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
    [CrossRef] [PubMed]
  21. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005).
    [CrossRef] [PubMed]
  22. D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
    [CrossRef] [PubMed]
  23. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006).
    [CrossRef] [PubMed]
  24. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33, 2602–2604 (2008).
    [CrossRef] [PubMed]
  25. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).
  26. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
    [CrossRef]
  27. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
    [CrossRef] [PubMed]
  28. C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
    [CrossRef] [PubMed]
  29. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
    [CrossRef]
  30. E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22, 1732–1738 (2005).
    [CrossRef]
  31. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721–1726 (2007).
    [CrossRef]
  32. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
    [CrossRef] [PubMed]
  33. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
    [CrossRef] [PubMed]
  34. B. Julesz, Foundations of Ciclopean Perception (Univ. of Chicago Press, 1971).
  35. R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, 1983).
  36. I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis (Oxford Psychology Series No. 29, Oxford Univ. Press, 1995).
  37. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack–Hartmann sensor for the human eye,” J. Mod. Opt. 55, 703–716 (2008).
    [CrossRef]
  38. M. Kobayashi, N. Nakazawa, T. Yamaguchi, T. Otaki, Y. Hirohara, and T. Mihashi, “Binocular open-view Shack–Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration,” Appl. Opt. 47, 4619–4626 (2008).
    [CrossRef] [PubMed]
  39. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
    [CrossRef] [PubMed]
  40. R. Fielder and M. J. Moseley, “Does stereopsis matter in humans?” Eye 10, 233–238 (1996).
    [CrossRef] [PubMed]
  41. R. O’Connor, E. E. Birch, S. Anderson, H. Draper, and the FSOS Research Group, “The functional significance of stereopsis,” Invest. Ophthalmol. Visual Sci. 51, 2019–2023 (2010).
    [CrossRef]
  42. J. R. Jiménez, José J. Castro, Enrique Hita, and Rosario G. Anera, “Upper disparity limit after LASIK,” J. Opt. Soc. Am. A 25, 1227–1231 (2008).
    [CrossRef]
  43. J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic Physiol. Opt. 29, 370–374 (2009).
    [CrossRef] [PubMed]
  44. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
    [CrossRef] [PubMed]
  45. P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, “The effect of polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A 19, 809–814 (2002).
    [CrossRef]
  46. L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157, 383–390 (2004).
    [CrossRef] [PubMed]
  47. L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171, 99–115 (2006).
    [CrossRef]
  48. G. Westheimer and S. P. McKee, “Stereogram design for testing local stereopsis,” Invest. Ophthalmol. Visual Sci. 19, 802–809 (1980).
  49. M. Bach, C. Schmitt, M. Kromeier, and G. Kommerell, “The Freiburg stereoacuity test: automatic measurement of stereo threshold,” Graefe's Arch. Clin. Exp. Ophthalmol. 239, 562–566 (2001).
    [CrossRef]
  50. J. V. Lovasik and M. Szymkiw, “Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis,” Invest. Ophthalmol. Visual Sci. 26, 741–750 (1985).
  51. P. P. Schmidt, “Sensitivity of random-dot stereoacuity and Snellen acuity to optical blur,” Optom. Vision Sci. 71, 466–471 (1994).
    [CrossRef]
  52. C. Schor and T. Heckmann, “Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion,” Vision Res. 29, 837–847 (1989).
    [CrossRef] [PubMed]
  53. L. K. Cormack, S. B. Stevenson, and D. D. Landers, “Interactions of spatial frequency and unequal monocular contrasts in stereopsis,” Perception 26, 1121–1135 (1997).
    [CrossRef] [PubMed]
  54. D. L. Halpern and R. R. Blake, “How contrast affects stereoacuity,” Perception 17, 483—495 (1988).
    [CrossRef] [PubMed]
  55. G. Legge and Y. Gu, “Stereopsis and contrast,” Vision Res. 29, 989–1004 (1989).
    [CrossRef] [PubMed]
  56. I. C. Wood, “Stereopsis with spatially degraded images,” Invest. Ophthalmol. Visual Sci. 3, 337–340 (1983).
  57. T. Geib and C. Baumann, “Effect of luminance and contrast on stereoscopic acuity,” Graefe's Arch. Clin. Exp. Ophthalmol. 228, 310–315 (1990).
    [CrossRef]

2010 (3)

2009 (3)

2008 (6)

2007 (3)

2006 (4)

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171, 99–115 (2006).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46, 3009–3016 (2006).
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (4)

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157, 383–390 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (6)

2001 (5)

2000 (1)

1997 (3)

1996 (1)

R. Fielder and M. J. Moseley, “Does stereopsis matter in humans?” Eye 10, 233–238 (1996).
[CrossRef] [PubMed]

1995 (1)

I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis (Oxford Psychology Series No. 29, Oxford Univ. Press, 1995).

1994 (3)

1990 (1)

T. Geib and C. Baumann, “Effect of luminance and contrast on stereoscopic acuity,” Graefe's Arch. Clin. Exp. Ophthalmol. 228, 310–315 (1990).
[CrossRef]

1989 (2)

C. Schor and T. Heckmann, “Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion,” Vision Res. 29, 837–847 (1989).
[CrossRef] [PubMed]

G. Legge and Y. Gu, “Stereopsis and contrast,” Vision Res. 29, 989–1004 (1989).
[CrossRef] [PubMed]

1988 (1)

D. L. Halpern and R. R. Blake, “How contrast affects stereoacuity,” Perception 17, 483—495 (1988).
[CrossRef] [PubMed]

1985 (1)

J. V. Lovasik and M. Szymkiw, “Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis,” Invest. Ophthalmol. Visual Sci. 26, 741–750 (1985).

1983 (2)

I. C. Wood, “Stereopsis with spatially degraded images,” Invest. Ophthalmol. Visual Sci. 3, 337–340 (1983).

R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, 1983).

1980 (1)

G. Westheimer and S. P. McKee, “Stereogram design for testing local stereopsis,” Invest. Ophthalmol. Visual Sci. 19, 802–809 (1980).

1971 (1)

B. Julesz, Foundations of Ciclopean Perception (Univ. of Chicago Press, 1971).

Anderson, S.

R. O’Connor, E. E. Birch, S. Anderson, H. Draper, and the FSOS Research Group, “The functional significance of stereopsis,” Invest. Ophthalmol. Visual Sci. 51, 2019–2023 (2010).
[CrossRef]

Anera, Rosario G.

Aragón, J. L.

Artal, P.

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[CrossRef] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
[CrossRef] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[CrossRef] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
[CrossRef] [PubMed]

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[CrossRef]

E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8to1070 nm,” Opt. Express 16, 21199–21208 (2008).
[CrossRef] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
[CrossRef] [PubMed]

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721–1726 (2007).
[CrossRef]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22, 1732–1738 (2005).
[CrossRef]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400–409 (2005).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[CrossRef]

E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
[CrossRef]

Ayala, D. B.

Bach, M.

M. Bach, C. Schmitt, M. Kromeier, and G. Kommerell, “The Freiburg stereoacuity test: automatic measurement of stereo threshold,” Graefe's Arch. Clin. Exp. Ophthalmol. 239, 562–566 (2001).
[CrossRef]

Baumann, C.

T. Geib and C. Baumann, “Effect of luminance and contrast on stereoscopic acuity,” Graefe's Arch. Clin. Exp. Ophthalmol. 228, 310–315 (1990).
[CrossRef]

Benito, A.

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

Berrio, E.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Bierden, P.

Bille, J. F.

Birch, E. E.

R. O’Connor, E. E. Birch, S. Anderson, H. Draper, and the FSOS Research Group, “The functional significance of stereopsis,” Invest. Ophthalmol. Visual Sci. 51, 2019–2023 (2010).
[CrossRef]

Blake, R. R.

D. L. Halpern and R. R. Blake, “How contrast affects stereoacuity,” Perception 17, 483—495 (1988).
[CrossRef] [PubMed]

Bradley, A.

Burns, S. A.

Cagigal, M. P.

Canales, V. F.

Cánovas, C.

Castejón-Mochón, J. F.

Castro, J. J.

J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic Physiol. Opt. 29, 370–374 (2009).
[CrossRef] [PubMed]

Castro, José J.

Chen, L.

Cheng, X.

Chin, S. S.

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack–Hartmann sensor for the human eye,” J. Mod. Opt. 55, 703–716 (2008).
[CrossRef]

Cormack, L. K.

L. K. Cormack, S. B. Stevenson, and D. D. Landers, “Interactions of spatial frequency and unequal monocular contrasts in stereopsis,” Perception 26, 1121–1135 (1997).
[CrossRef] [PubMed]

Dainty, C.

Dalimier, E.

Doble, N.

Draper, H.

R. O’Connor, E. E. Birch, S. Anderson, H. Draper, and the FSOS Research Group, “The functional significance of stereopsis,” Invest. Ophthalmol. Visual Sci. 51, 2019–2023 (2010).
[CrossRef]

Drexler, W.

Fernández, E. J.

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
[CrossRef] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8to1070 nm,” Opt. Express 16, 21199–21208 (2008).
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22, 1732–1738 (2005).
[CrossRef]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400–409 (2005).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

Fidler, V.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002).
[CrossRef] [PubMed]

Fielder, R.

R. Fielder and M. J. Moseley, “Does stereopsis matter in humans?” Eye 10, 233–238 (1996).
[CrossRef] [PubMed]

Flanders, M.

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171, 99–115 (2006).
[CrossRef]

Geib, T.

T. Geib and C. Baumann, “Effect of luminance and contrast on stereoscopic acuity,” Graefe's Arch. Clin. Exp. Ophthalmol. 228, 310–315 (1990).
[CrossRef]

Geraghty, E.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002).
[CrossRef] [PubMed]

Gielen, C. C.

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171, 99–115 (2006).
[CrossRef]

Goelz, S.

Gorceix, N.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721–1726 (2007).
[CrossRef]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[CrossRef] [PubMed]

Grimm, B.

Gu, Y.

G. Legge and Y. Gu, “Stereopsis and contrast,” Vision Res. 29, 989–1004 (1989).
[CrossRef] [PubMed]

Guirao, A.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Gustafsson, J.

Halpern, D. L.

D. L. Halpern and R. R. Blake, “How contrast affects stereoacuity,” Perception 17, 483—495 (1988).
[CrossRef] [PubMed]

Hampson, K. M.

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack–Hartmann sensor for the human eye,” J. Mod. Opt. 55, 703–716 (2008).
[CrossRef]

Heckmann, T.

C. Schor and T. Heckmann, “Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion,” Vision Res. 29, 837–847 (1989).
[CrossRef] [PubMed]

Hermann, B.

Hirohara, Y.

Hita, E.

J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic Physiol. Opt. 29, 370–374 (2009).
[CrossRef] [PubMed]

Hita, Enrique

Hofer, H.

Hong, X.

Howard, I. P.

I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis (Oxford Psychology Series No. 29, Oxford Univ. Press, 1995).

Iglesias, I.

Jansonius, N. M.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002).
[CrossRef] [PubMed]

Jiménez, J. R.

J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic Physiol. Opt. 29, 370–374 (2009).
[CrossRef] [PubMed]

J. R. Jiménez, José J. Castro, Enrique Hita, and Rosario G. Anera, “Upper disparity limit after LASIK,” J. Opt. Soc. Am. A 25, 1227–1231 (2008).
[CrossRef]

Julesz, B.

B. Julesz, Foundations of Ciclopean Perception (Univ. of Chicago Press, 1971).

Kobayashi, M.

Kommerell, G.

M. Bach, C. Schmitt, M. Kromeier, and G. Kommerell, “The Freiburg stereoacuity test: automatic measurement of stereo threshold,” Graefe's Arch. Clin. Exp. Ophthalmol. 239, 562–566 (2001).
[CrossRef]

Kooijman, A. C.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002).
[CrossRef] [PubMed]

Kromeier, M.

M. Bach, C. Schmitt, M. Kromeier, and G. Kommerell, “The Freiburg stereoacuity test: automatic measurement of stereo threshold,” Graefe's Arch. Clin. Exp. Ophthalmol. 239, 562–566 (2001).
[CrossRef]

Landers, D. D.

L. K. Cormack, S. B. Stevenson, and D. D. Landers, “Interactions of spatial frequency and unequal monocular contrasts in stereopsis,” Perception 26, 1121–1135 (1997).
[CrossRef] [PubMed]

Legge, G.

G. Legge and Y. Gu, “Stereopsis and contrast,” Vision Res. 29, 989–1004 (1989).
[CrossRef] [PubMed]

Lenoir, M.

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157, 383–390 (2004).
[CrossRef] [PubMed]

Liang, J.

Lindacher, J. M.

López-Gil, N.

Lovasik, J. V.

J. V. Lovasik and M. Szymkiw, “Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis,” Invest. Ophthalmol. Visual Sci. 26, 741–750 (1985).

Lundström, L.

Mallen, E. A. H.

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack–Hartmann sensor for the human eye,” J. Mod. Opt. 55, 703–716 (2008).
[CrossRef]

Manzanera, S.

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
[CrossRef] [PubMed]

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[CrossRef] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
[CrossRef] [PubMed]

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721–1726 (2007).
[CrossRef]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

Marcos, S.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46, 3009–3016 (2006).
[CrossRef] [PubMed]

Mazyn, L. I. N.

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157, 383–390 (2004).
[CrossRef] [PubMed]

McKee, S. P.

G. Westheimer and S. P. McKee, “Stereogram design for testing local stereopsis,” Invest. Ophthalmol. Visual Sci. 19, 802–809 (1980).

McLellan, J. S.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46, 3009–3016 (2006).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, “The effect of polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A 19, 809–814 (2002).
[CrossRef]

Mihashi, T.

Miller, D.

Miller, D. T.

Mira, A.

Montagne, G.

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157, 383–390 (2004).
[CrossRef] [PubMed]

Moseley, M. J.

R. Fielder and M. J. Moseley, “Does stereopsis matter in humans?” Eye 10, 233–238 (1996).
[CrossRef] [PubMed]

Mrotek, L. A.

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171, 99–115 (2006).
[CrossRef]

Nakazawa, N.

Navarro, R.

Nio, Y. K.

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002).
[CrossRef] [PubMed]

Norrby, S.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002).
[CrossRef] [PubMed]

O’Connor, R.

R. O’Connor, E. E. Birch, S. Anderson, H. Draper, and the FSOS Research Group, “The functional significance of stereopsis,” Invest. Ophthalmol. Visual Sci. 51, 2019–2023 (2010).
[CrossRef]

Olivier, S.

Ortiz, C.

J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic Physiol. Opt. 29, 370–374 (2009).
[CrossRef] [PubMed]

Otaki, T.

Piers, P.

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

Piers, P. A.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721–1726 (2007).
[CrossRef]

Povazay, B.

Prieto, P. M.

C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35, 196–198 (2010).
[CrossRef] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
[CrossRef] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34, 2628–2630 (2009).
[CrossRef] [PubMed]

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721–1726 (2007).
[CrossRef]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[CrossRef] [PubMed]

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46, 3009–3016 (2006).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400–409 (2005).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, “The effect of polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A 19, 809–814 (2002).
[CrossRef]

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

Qi, X.

Reading, R. W.

R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, 1983).

Rogers, B. J.

I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis (Oxford Psychology Series No. 29, Oxford Univ. Press, 1995).

Savelsbergh, G. J. P.

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157, 383–390 (2004).
[CrossRef] [PubMed]

Schmidt, P. P.

P. P. Schmidt, “Sensitivity of random-dot stereoacuity and Snellen acuity to optical blur,” Optom. Vision Sci. 71, 466–471 (1994).
[CrossRef]

Schmitt, C.

M. Bach, C. Schmitt, M. Kromeier, and G. Kommerell, “The Freiburg stereoacuity test: automatic measurement of stereo threshold,” Graefe's Arch. Clin. Exp. Ophthalmol. 239, 562–566 (2001).
[CrossRef]

Schor, C.

C. Schor and T. Heckmann, “Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion,” Vision Res. 29, 837–847 (1989).
[CrossRef] [PubMed]

Singer, B.

Stevenson, S. B.

L. K. Cormack, S. B. Stevenson, and D. D. Landers, “Interactions of spatial frequency and unequal monocular contrasts in stereopsis,” Perception 26, 1121–1135 (1997).
[CrossRef] [PubMed]

Szymkiw, M.

J. V. Lovasik and M. Szymkiw, “Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis,” Invest. Ophthalmol. Visual Sci. 26, 741–750 (1985).

Tabernero, J.

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

Thibos, L.

Thibos, L. N.

Unsbo, P.

Unterhuber, A.

Vabre, L.

Vargas-Martín, F.

Weeber, H.

Westheimer, G.

G. Westheimer and S. P. McKee, “Stereogram design for testing local stereopsis,” Invest. Ophthalmol. Visual Sci. 19, 802–809 (1980).

Williams, D. R.

Wood, I. C.

I. C. Wood, “Stereopsis with spatially degraded images,” Invest. Ophthalmol. Visual Sci. 3, 337–340 (1983).

Yamaguchi, T.

Yamauchi, Y.

Yoon, G.

Yoon, G. Y.

Zou, W.

Appl. Opt. (1)

Exp. Brain Res. (2)

L. I. N. Mazyn, M. Lenoir, G. Montagne, and G. J. P. Savelsbergh, “The contribution of stereo vision to one-handed catching,” Exp. Brain Res. 157, 383–390 (2004).
[CrossRef] [PubMed]

L. A. Mrotek, C. C. Gielen, and M. Flanders, “Manual tracking in three dimensions,” Exp. Brain Res. 171, 99–115 (2006).
[CrossRef]

Eye (1)

R. Fielder and M. J. Moseley, “Does stereopsis matter in humans?” Eye 10, 233–238 (1996).
[CrossRef] [PubMed]

Graefe's Arch. Clin. Exp. Ophthalmol. (2)

M. Bach, C. Schmitt, M. Kromeier, and G. Kommerell, “The Freiburg stereoacuity test: automatic measurement of stereo threshold,” Graefe's Arch. Clin. Exp. Ophthalmol. 239, 562–566 (2001).
[CrossRef]

T. Geib and C. Baumann, “Effect of luminance and contrast on stereoscopic acuity,” Graefe's Arch. Clin. Exp. Ophthalmol. 228, 310–315 (1990).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (5)

I. C. Wood, “Stereopsis with spatially degraded images,” Invest. Ophthalmol. Visual Sci. 3, 337–340 (1983).

G. Westheimer and S. P. McKee, “Stereogram design for testing local stereopsis,” Invest. Ophthalmol. Visual Sci. 19, 802–809 (1980).

J. V. Lovasik and M. Szymkiw, “Effects of aniseikonia, anisometropia, accommodation, retinal illuminance, and pupil size on stereopsis,” Invest. Ophthalmol. Visual Sci. 26, 741–750 (1985).

R. O’Connor, E. E. Birch, S. Anderson, H. Draper, and the FSOS Research Group, “The functional significance of stereopsis,” Invest. Ophthalmol. Visual Sci. 51, 2019–2023 (2010).
[CrossRef]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Visual Sci. 45, 4601–4610 (2004).
[CrossRef]

J. Cataract Refractive Surg. (1)

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721–1726 (2007).
[CrossRef]

J. Mod. Opt. (1)

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack–Hartmann sensor for the human eye,” J. Mod. Opt. 55, 703–716 (2008).
[CrossRef]

J. Opt. Soc. Am. A (10)

P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, “The effect of polarization on ocular wave aberration measurements,” J. Opt. Soc. Am. A 19, 809–814 (2002).
[CrossRef]

J. R. Jiménez, José J. Castro, Enrique Hita, and Rosario G. Anera, “Upper disparity limit after LASIK,” J. Opt. Soc. Am. A 25, 1227–1231 (2008).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22, 1732–1738 (2005).
[CrossRef]

J. Refract. Surg. (1)

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, 634–638 (2002).

J. Vision (3)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Nat. Photonics (1)

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[CrossRef]

Ophthalmic Physiol. Opt. (2)

Y. K. Nio, N. M. Jansonius, V. Fidler, E. Geraghty, S. Norrby, and A. C. Kooijman, “Spherical and irregular aberrations are important for the optimal performance of the human eye,” Ophthalmic Physiol. Opt. 22, 103–112 (2002).
[CrossRef] [PubMed]

J. J. Castro, J. R. Jiménez, E. Hita, and C. Ortiz, “Influence of interocular differences in the Strehl ratio on binocular summation,” Ophthalmic Physiol. Opt. 29, 370–374 (2009).
[CrossRef] [PubMed]

Opt. Express (12)

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006).
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[CrossRef] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15, 16177–16188 (2007).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef] [PubMed]

D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400–409 (2005).
[CrossRef] [PubMed]

E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13, 4275–4285 (2005).
[CrossRef] [PubMed]

P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18, 1637–1648 (2010).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8to1070 nm,” Opt. Express 16, 21199–21208 (2008).
[CrossRef] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17, 11013–11025 (2009).
[CrossRef] [PubMed]

Opt. Lett. (6)

Optom. Vision Sci. (1)

P. P. Schmidt, “Sensitivity of random-dot stereoacuity and Snellen acuity to optical blur,” Optom. Vision Sci. 71, 466–471 (1994).
[CrossRef]

Perception (2)

L. K. Cormack, S. B. Stevenson, and D. D. Landers, “Interactions of spatial frequency and unequal monocular contrasts in stereopsis,” Perception 26, 1121–1135 (1997).
[CrossRef] [PubMed]

D. L. Halpern and R. R. Blake, “How contrast affects stereoacuity,” Perception 17, 483—495 (1988).
[CrossRef] [PubMed]

Vision Res. (3)

G. Legge and Y. Gu, “Stereopsis and contrast,” Vision Res. 29, 989–1004 (1989).
[CrossRef] [PubMed]

C. Schor and T. Heckmann, “Interocular differences in contrast and spatial frequency: effects on stereopsis and fusion,” Vision Res. 29, 837–847 (1989).
[CrossRef] [PubMed]

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46, 3009–3016 (2006).
[CrossRef] [PubMed]

Other (3)

B. Julesz, Foundations of Ciclopean Perception (Univ. of Chicago Press, 1971).

R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, 1983).

I. P. Howard and B. J. Rogers, Binocular Vision and Stereopsis (Oxford Psychology Series No. 29, Oxford Univ. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of BAOVS showing the main components (see text for additional details).

Fig. 2
Fig. 2

Alignment procedure of phase pupils to entrance pupils of the apparatus.

Fig. 3
Fig. 3

Stereo-acuity obtained by the three-needle test with best refraction correction in subject JOS. Solid curve is a fitted sigmoid function.

Fig. 4
Fig. 4

Stereo-acuity obtained by using random-dot test in different defocus conditions: best refraction correction (top-left), adding 1D bilateral (bottom-left), and 1D unilateral in right eye (top-right). Corresponding fitting curves are also shown (bottom—right).

Fig. 5
Fig. 5

Stereo-acuity obtained by using random-dot test with induced trefoil ( 1 μ m ) : best refraction correction (top-left), adding trefoil bilateral (bottom-left), and trefoil unilateral in right eye (top-right). Corresponding fitting curves are also shown (bottom-right).

Metrics