Abstract

We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror optical interface design, as well as a large-stroke deformable mirror (DM), enable the AOSLO image field to be corrected at any retinal coordinates of interest in a field of >25deg. AO performance was assessed by imaging individuals with a range of refractive errors. In most subjects, image contrast was measurable at spatial frequencies close to the diffraction limit. Closed-loop optical (hardware) tracking performance was assessed by comparing sequential image series with and without stabilization. Though usually better than 10μm rms, or 0.03deg, tracking does not yet stabilize to single cone precision but significantly improves average image quality and increases the number of frames that can be successfully aligned by software-based post-processing methods. The new optical interface allows the high-resolution imaging field to be placed anywhere within the wide field without requiring the subject to re-fixate, enabling easier retinal navigation and faster, more efficient AOSLO montage capture and stitching.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Dreher, J. F. Bille, and R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
    [CrossRef] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  3. A. Roorda, F. Romero-Borja, W. I. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [PubMed]
  4. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [CrossRef] [PubMed]
  5. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
    [CrossRef] [PubMed]
  6. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
    [CrossRef] [PubMed]
  7. S. A. Burns, R. Tumbar, A. E. Elsner, R. D. Ferguson, and D. X. Hammer, “Large field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
    [CrossRef]
  8. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24, 1327–1336 (2007).
    [CrossRef]
  9. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16, 8126–8143 (2008).
    [CrossRef] [PubMed]
  10. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16, 11083–11094 (2008).
    [CrossRef] [PubMed]
  11. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).
    [CrossRef] [PubMed]
  12. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007).
    [CrossRef] [PubMed]
  13. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Visual Sci. 49, 713–719 (2008).
    [CrossRef]
  14. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef] [PubMed]
  15. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004).
    [CrossRef] [PubMed]
  16. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
    [CrossRef] [PubMed]
  17. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404–412 (2002).
    [CrossRef]
  18. W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
    [CrossRef]
  19. N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).
  20. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
    [CrossRef] [PubMed]
  21. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
    [CrossRef]
  22. D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
    [CrossRef]
  23. J. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
    [CrossRef] [PubMed]
  24. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16, 12746–12756 (2008).
    [CrossRef] [PubMed]
  25. M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
    [CrossRef]
  26. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
    [CrossRef]
  27. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006).
    [CrossRef]
  28. A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Visual Sci. 48, 2297–2303 (2007).
    [CrossRef]
  29. A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, , “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
    [CrossRef]
  30. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
    [CrossRef]
  31. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
    [CrossRef]
  32. S. S. Choi, R. J. Zawadzki, J. L. Keltner, and J. S. Werner, “Changes in cellular structures revealed by ultra-high-resolution retinal imaging in optic neuropathies,” Invest. Ophthalmol. Visual Sci. 49, 2103–2119 (2008).
    [CrossRef]
  33. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008).
    [CrossRef]
  34. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17, 4095–4111 (2009).
    [CrossRef] [PubMed]
  35. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
    [CrossRef] [PubMed]
  36. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
    [CrossRef]
  37. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006).
    [CrossRef] [PubMed]
  38. F. Vargas-Martin, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [CrossRef]
  39. T. Shirai, “Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging,” Appl. Opt. 41, 4013 (2002).
    [CrossRef] [PubMed]
  40. A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser ophthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803–688803-13 (2008).
    [CrossRef]
  41. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33, 2602–2604 (2008).
    [CrossRef] [PubMed]
  42. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
    [CrossRef] [PubMed]
  43. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
    [CrossRef] [PubMed]
  44. S. A. Burns, W. Zou, H. Song, and Z. Zhong, “Wavelength variable adaptive optics imaging using a supercontinuum light source,” Invest. Ophthalmol. Visual Sci.2009; 50: ARVO E-Abstract 1053/D961.
  45. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors—variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169–180 (1992).
    [CrossRef]
  46. T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679–4687 (2008).
    [CrossRef]
  47. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high-resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
    [CrossRef]
  48. A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008).
    [CrossRef]
  49. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14), 487–497 (2006).
    [CrossRef] [PubMed]
  50. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007).
    [CrossRef] [PubMed]

2010 (1)

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
[CrossRef] [PubMed]

2009 (5)

B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17, 4095–4111 (2009).
[CrossRef] [PubMed]

A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, , “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
[CrossRef]

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[CrossRef]

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

S. A. Burns, W. Zou, H. Song, and Z. Zhong, “Wavelength variable adaptive optics imaging using a supercontinuum light source,” Invest. Ophthalmol. Visual Sci.2009; 50: ARVO E-Abstract 1053/D961.

2008 (12)

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser ophthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803–688803-13 (2008).
[CrossRef]

W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33, 2602–2604 (2008).
[CrossRef] [PubMed]

T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679–4687 (2008).
[CrossRef]

A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008).
[CrossRef]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16, 12746–12756 (2008).
[CrossRef] [PubMed]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

S. S. Choi, R. J. Zawadzki, J. L. Keltner, and J. S. Werner, “Changes in cellular structures revealed by ultra-high-resolution retinal imaging in optic neuropathies,” Invest. Ophthalmol. Visual Sci. 49, 2103–2119 (2008).
[CrossRef]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008).
[CrossRef]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16, 8126–8143 (2008).
[CrossRef] [PubMed]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16, 11083–11094 (2008).
[CrossRef] [PubMed]

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Visual Sci. 49, 713–719 (2008).
[CrossRef]

2007 (6)

2006 (10)

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14), 487–497 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006).
[CrossRef] [PubMed]

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
[CrossRef]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[CrossRef] [PubMed]

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
[CrossRef]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006).
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).
[CrossRef] [PubMed]

2005 (5)

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[CrossRef] [PubMed]

N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).

J. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[CrossRef] [PubMed]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high-resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

2004 (2)

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004).
[CrossRef] [PubMed]

2002 (4)

1999 (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1992 (1)

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors—variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169–180 (1992).
[CrossRef]

1989 (1)

Ahamd, K.

Ahnelt, P. K.

Arathorn, D. W.

Artal, P.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008).
[CrossRef]

Barnaby, A. M.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008).
[CrossRef]

Bierden, P.

Bigelow, C. E.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24, 1327–1336 (2007).
[CrossRef]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
[CrossRef] [PubMed]

Bille, J. F.

Bloom, B.

Bower, B. A.

Branham, K. E. H.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

Brown, J. M.

Burns, S. A.

Campbell, M.

Carroll, J.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
[CrossRef]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006).
[CrossRef]

N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Cense, B.

Chen, L.

N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
[CrossRef]

Choi, S.

Choi, S. S.

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16, 8126–8143 (2008).
[CrossRef] [PubMed]

S. S. Choi, R. J. Zawadzki, J. L. Keltner, and J. S. Werner, “Changes in cellular structures revealed by ultra-high-resolution retinal imaging in optic neuropathies,” Invest. Ophthalmol. Visual Sci. 49, 2103–2119 (2008).
[CrossRef]

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
[CrossRef]

Christie, N.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
[CrossRef]

Chui, T. Y. P.

T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679–4687 (2008).
[CrossRef]

Chung, M.

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006).
[CrossRef]

Curcio, C. A.

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors—variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169–180 (1992).
[CrossRef]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008).
[CrossRef]

Doble, N.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
[CrossRef]

N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
[CrossRef]

Donnelly, W. I.

Dreher, A. W.

Drexler, W.

Dubra, A.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[CrossRef]

A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, , “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
[CrossRef]

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser ophthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803–688803-13 (2008).
[CrossRef]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[CrossRef] [PubMed]

Duncan, J. L.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Visual Sci. 48, 2297–2303 (2007).
[CrossRef]

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

Elsner, A. E.

Fercher, A. F.

Ferguson, R. D.

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

S. A. Burns, R. Tumbar, A. E. Elsner, R. D. Ferguson, and D. X. Hammer, “Large field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
[CrossRef]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24, 1327–1336 (2007).
[CrossRef]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
[CrossRef] [PubMed]

Fernandez, E. J.

Fernández, E. J.

Frasier, J.

A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008).
[CrossRef]

Fulton, A. B.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

Gandhi, J.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

Gao, W.

Gee, B. P.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[CrossRef] [PubMed]

Geng, Y.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

Gillum, L.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

Gomez-Vieyra, A.

Gray, D. C.

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser ophthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803–688803-13 (2008).
[CrossRef]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[CrossRef] [PubMed]

Green, A.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

Grieve, K.

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Visual Sci. 49, 713–719 (2008).
[CrossRef]

Hammer, D. X.

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24, 1327–1336 (2007).
[CrossRef]

S. A. Burns, R. Tumbar, A. E. Elsner, R. D. Ferguson, and D. X. Hammer, “Large field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
[CrossRef]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
[CrossRef] [PubMed]

Hardy, J. L.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
[CrossRef]

Hebert, T.

Hermann, B.

Hofer, B.

Hofer, H.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Hofer, H. J.

N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).

Iftimia, N.

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
[CrossRef] [PubMed]

Iftimia, N. V.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24, 1327–1336 (2007).
[CrossRef]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
[CrossRef] [PubMed]

Izatt, J. A.

Jones, S.

Jones, S. M.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
[CrossRef]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[CrossRef] [PubMed]

Jonnal, R. S.

Keltner, J. L.

S. S. Choi, R. J. Zawadzki, J. L. Keltner, and J. S. Werner, “Changes in cellular structures revealed by ultra-high-resolution retinal imaging in optic neuropathies,” Invest. Ophthalmol. Visual Sci. 49, 2103–2119 (2008).
[CrossRef]

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
[CrossRef]

Kocaoglu, O. P.

Koperda, E.

Laut, S.

Liang, J.

Lin, J.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
[CrossRef]

Lue, N.

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
[CrossRef] [PubMed]

Luque, S.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

Makous, W.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
[CrossRef]

Malacara-Hernandez, D.

Martin, J.

J. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[CrossRef] [PubMed]

Masella, B. D.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

Merigan, W.

Merigan, W. H.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[CrossRef]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008).
[CrossRef]

Miller, D. T.

Morgan, J. I. W.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[CrossRef]

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser ophthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803–688803-13 (2008).
[CrossRef]

Mujat, M.

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
[CrossRef] [PubMed]

Nakanishi, C.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

Neitz, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Neitz, M.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Olivier, S.

Olivier, S. S.

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
[CrossRef]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[CrossRef] [PubMed]

Othman, M.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

Parker, A.

Patel, A. H.

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
[CrossRef] [PubMed]

Petrig, B. L.

Poonja, S.

A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).
[CrossRef] [PubMed]

Porter, J.

Považay, B.

Prieto, P. M.

Putnum, N. M.

N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).

Qi, X.

Queener, H.

Raghunandan, A.

A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008).
[CrossRef]

Reinholz, F.

Rha, J.

Romero-Borja, F.

Roorda, A.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Visual Sci. 49, 713–719 (2008).
[CrossRef]

A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008).
[CrossRef]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007).
[CrossRef] [PubMed]

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Visual Sci. 48, 2297–2303 (2007).
[CrossRef]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006).
[CrossRef]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14), 487–497 (2006).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).
[CrossRef] [PubMed]

J. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[CrossRef] [PubMed]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high-resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404–412 (2002).
[CrossRef]

A. Roorda, F. Romero-Borja, W. I. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[PubMed]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Sattmann, H.

Scoles, D.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

Shirai, T.

Singer, B.

Sloan, K. R.

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors—variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169–180 (1992).
[CrossRef]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008).
[CrossRef]

Song, H.

S. A. Burns, W. Zou, H. Song, and Z. Zhong, “Wavelength variable adaptive optics imaging using a supercontinuum light source,” Invest. Ophthalmol. Visual Sci.2009; 50: ARVO E-Abstract 1053/D961.

T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679–4687 (2008).
[CrossRef]

Stevenson, S. B.

A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008).
[CrossRef]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high-resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

Swaroop, A.

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

Tiruveedhula, P.

Tumbar, R.

Twietmeyer, T. H.

Unterhuber, A.

Ustun, T. E.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24, 1327–1336 (2007).
[CrossRef]

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
[CrossRef] [PubMed]

Vabre, L.

Vargas-Martin, F.

Vogel, C. R.

Webb, R. H.

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

Weinreb, R. N.

Werner, J. S.

Williams, D. R.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[CrossRef]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser ophthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803–688803-13 (2008).
[CrossRef]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006).
[CrossRef]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[CrossRef] [PubMed]

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
[CrossRef]

N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004).
[CrossRef] [PubMed]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404–412 (2002).
[CrossRef]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
[CrossRef]

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

Wolfe, R.

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[CrossRef]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

Wolfing, J. I.

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[CrossRef] [PubMed]

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
[CrossRef]

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006).
[CrossRef]

Wong, L.-J. C.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

Yang, Q.

Yoon, G.

Yoon, M. K.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

Zawadzki, R. J.

Zhang, Q.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

Zhang, Y.

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16, 8126–8143 (2008).
[CrossRef] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007).
[CrossRef] [PubMed]

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Visual Sci. 48, 2297–2303 (2007).
[CrossRef]

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
[CrossRef] [PubMed]

Zhao, M.

Zhong, Z.

S. A. Burns, W. Zou, H. Song, and Z. Zhong, “Wavelength variable adaptive optics imaging using a supercontinuum light source,” Invest. Ophthalmol. Visual Sci.2009; 50: ARVO E-Abstract 1053/D961.

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16, 12746–12756 (2008).
[CrossRef] [PubMed]

Zou, W.

S. A. Burns, W. Zou, H. Song, and Z. Zhong, “Wavelength variable adaptive optics imaging using a supercontinuum light source,” Invest. Ophthalmol. Visual Sci.2009; 50: ARVO E-Abstract 1053/D961.

W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33, 2602–2604 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Invest. Ophthalmol. Visual Sci. (11)

J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283–3291 (2007).
[CrossRef]

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Visual Sci. 49, 2061–2070 (2008).
[CrossRef]

S. S. Choi, R. J. Zawadzki, J. L. Keltner, and J. S. Werner, “Changes in cellular structures revealed by ultra-high-resolution retinal imaging in optic neuropathies,” Invest. Ophthalmol. Visual Sci. 49, 2103–2119 (2008).
[CrossRef]

J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50, 1350–1359 (2009).
[CrossRef]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Visual Sci. 49, 467–473 (2008).
[CrossRef]

M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L.-J. C. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images demonstrate abnormal cone structure in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Visual Sci. 50, 1838–1847 (2009).
[CrossRef]

S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Visual Sci. 47, 2080–2092 (2006).
[CrossRef]

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Visual Sci. 48, 2297–2303 (2007).
[CrossRef]

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Visual Sci. 49, 713–719 (2008).
[CrossRef]

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, “Retinal microscotomas revealed with adaptive-optics microflashes,” Invest. Ophthalmol. Visual Sci. 47, 4160–4167 (2006).
[CrossRef]

T. Y. P. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Visual Sci. 49, 4679–4687 (2008).
[CrossRef]

J. Biomed. Opt. (2)

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, and R. H. Webb, “Line-scanning laser ophthalmoscope,” J. Biomed. Opt. 11, 041126 (2006).
[CrossRef] [PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 3, 024008 (2008).
[CrossRef]

J. Neurosci. (1)

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

J. Vision (3)

A. Raghunandan, J. Frasier, S. Poonja, A. Roorda, and S. B. Stevenson, “Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging,” J. Vision 8, 1–11 (2008).
[CrossRef]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404–412 (2002).
[CrossRef]

N. M. Putnum, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vision 5, 632–639 (2005).

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Ophthalmology (2)

J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014–1019 (2006).
[CrossRef]

J. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112, 2219–2224 (2005).
[CrossRef] [PubMed]

Opt. Express (15)

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16, 12746–12756 (2008).
[CrossRef] [PubMed]

A. Gomez-Vieyra, A. Dubra, D. Malacara-Hernandez, , “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
[CrossRef]

B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17, 4095–4111 (2009).
[CrossRef] [PubMed]

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “high-resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 2010.
[CrossRef] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15, 16141–16160 (2007).
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900–8917 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14, 7144–7158 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16, 8126–8143 (2008).
[CrossRef] [PubMed]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh-resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16, 11083–11094 (2008).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. I. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14), 487–497 (2006).
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15, 13731–13744 (2007).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461–8466 (2004).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. Dubra, D. C. Gray, J. I. W. Morgan, and D. R. Williams, “MEMS in adaptive optics scanning laser ophthalmoscopy: achievements and challenges,” Proc. SPIE 6888, 688803–688803-13 (2008).
[CrossRef]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high-resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

Visual Neurosci. (1)

C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors—variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169–180 (1992).
[CrossRef]

Other (1)

S. A. Burns, W. Zou, H. Song, and Z. Zhong, “Wavelength variable adaptive optics imaging using a supercontinuum light source,” Invest. Ophthalmol. Visual Sci.2009; 50: ARVO E-Abstract 1053/D961.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Unfolded diagram of the Integrated Indiana AOSLO Implementation. Though the layout is similar to many other AO implementations, there are three regions where the optics are folded vertically for astigmatism compensation. The first two are shown shaded, and the third is at the final large spherical mirror (sph 12). The wide-field imaging/eye-tracking module integrates those features efficiently in a compact package. Other unique features a supercontinuum light source, which is filtered, separated into selected bands, and delivered via single-mode fiber to the main imaging system.

Fig. 2
Fig. 2

Zemax simulations: near-diffraction-limited performance across a small imaging field. The angles were adjusted for 8 deg eccentricity along a diagonal. The Mirao mirror simulates a correction for the best field. Wavefronts for the four corners and the center of a 2.25  deg (diagonal) imaging field are shown. All rms wavefront errors are less than 0.11 μ m . For AOSLO imaging fields near 0 deg eccentricity, variation is markedly smaller, with rms errors typically below 0.08 μ m .

Fig. 3
Fig. 3

Zemax simulations of wavefront corrections for 2 deg AOSLO scans in 3 locations, corresponding to (a) the top ( + 15 deg ) of the field, (b) center ( 0 deg ) , and (c) bottom ( 15 deg ) of the field in a paraxial eye. Left panel, uncorrected system wavefront errors; center panel, compensating Mirao surface sags to third order with scales in μ m ; right panel, resulting corrected wavefronts. The average rms error after AO correction is < 0.15 waves ( 0.11 μ m at 750 nm ). The maximum stroke (Mirao sag) needed to compensate system aberrations over the 30 deg field is < 10 μ m .

Fig. 4
Fig. 4

Optical integration scheme. Pupils are combined before entering the final, wide-field ocular interface section. Dichroic beamsplitters (DCs) enable the various bands to be combined. With the appropriate dichroics, fluorescence imaging can be incorporated as well. The tracking mirror, T Y , is conjugate to the center of rotation of the eye and steers all beams in common. T X (not shown) is just beyond the next pupil plane downstream.

Fig. 5
Fig. 5

LSO/tracker optomechanical integration module in SolidWorks for the new AOSLO interface as implemented at IU and PSI. Wide field of regard > 30 deg enables the small AOSLO raster to be steered anywhere within it. The final pair of large spherical mirrors and a paraxial eye are indicated as optical surfaces only.

Fig. 6
Fig. 6

Examples of the LSO ( 915 nm ) , tracker ( 1050 nm ) , and AOSLO features provided in the GUI interface: AOSLO raster is visible in the LSO image to facilitate positioning, as are lower-resolution LSO features and landmarks seen in the AOSLO images; track beam overlay is shown relative to optic disc anatomy, as is a fixation coordinate (central dot at left), which was not calibrated to the LCD fixation display when these images were obtained: the shadows are due to a temporary fixation post with an LED attached.

Fig. 7
Fig. 7

Average foveal cone image montage obtained from a 27  year old male. Cones are imaged to within approximately 50 μ m of the foveal center (the subject fixated the bottom left corner of the raster). Region shown is approximately 1.6 × 2.0 deg . Some residual distortion shows minor edge artifacts in the montage between different field sizes. Imaging wavelength was 840 nm with a 12 nm bandwidth. Imaging power was 180 μ W , beacon power was 40 μ W .

Fig. 8
Fig. 8

Montage of cone images obtained in a 56 year old male. Fixation was maintained just beyond the left end of the image (at fovea). AOSLO steering mirror (M2) was moved horizontally in a series of steps to 11 deg eccentricity. At each location a series of frames of video were acquired, aligned, and averaged to create the montage.

Fig. 9
Fig. 9

The function of active eye tracking. Tracking: (a) Single frame with vessel and nerve fiber, (b) 10-frame average, (c) 100-frame average. Non-tracking: (d) 100-frame average. Short-term ( < 1 s ) and long-term (several seconds) rms tracking/registration errors are subject-dependent and span the range of 5 to 15 μ m and without tracking from 50 to > 300 μ m . Eye tracking can significantly improve stable overlap and efficiency of sequential AOSLO image capture by limiting the magnitude of eye movement excursions

Fig. 10
Fig. 10

Averaging stabilized AOSLO cone photoreceptor images. (a) Single image of cones, 4 to 5 μ m in diameter. (b) 200-frame average during tracking. Note that some information at the cone spatial frequency is preserved, even though the net broadening appears to be several cone diameters.

Fig. 11
Fig. 11

Eye motion from AOSLO image cross-correlation. (a) No-tracking 100-image average, rms motion is 75.7 μ m shown in the x-y displacement graph below it. (b) Tracking, rms motion 5.5 μ m , and (c) fully de-warped and overlaid images as a benchmark for perfect ( < 1 cone diameter) alignment. The final graph at bottom right shows the total radial displacement over time for tracking and non-tracking. Note tracking transients < 30 μ m .

Fig. 12
Fig. 12

Eye tracking hierarchy. Eye motion can be partitioned between closed-loop optical tracking (hardware): AOSLO cross-correlation (software) and (a) non-tracking case, X-Y (software aligned); (b) tracking, hardware analog X-Y position signals, (c) tracking, residual X-Y frame errors (software); (d) fine-aligned 100-frame average, net result of software and hardware combined; resulting images aligned to within a single cone diameter. Real-time, on-line software mapping for fine alignment will be difficult from fixation alone. The path from (a) to (d) is greatly assisted in the stabilization hierarchy by hardware tracking through (b) and (c).

Fig. 13
Fig. 13

AOSLO cross-correlation software residual tracking errors (black), and hardware tracking signals (gray), in micrometers, compared in subject # 6. (a, b) X- and Y-positions versus time; a blink occurs at 6.7 s . With superior tracking, the residual AOSLO corrections should become smaller as the tracking mirror positions reflect higher-fidelity tracking. Some pupil drift interacting with the pupil mismatch between the tracker and the AOSLO raster can cause the AOSLO image drift seen in (a) or saccadic “bleedthrough” seen in (b).

Fig. 14
Fig. 14

Measured loss of averaged AOSLO image contrast (rms image sharpness) as a function of averaging interval over a 100-frame AOSLO video sequence (normalized to single-frame contrast). The diamonds are for an AOSLO video focused on blood vessels (BV/RNFL). The tracking (solid) and non-tracking (open) cases approach different contrast levels. The case of random data (zero frame overlap at all spatial frequencies) is included for comparison. The triangles are for cones; note the small difference because cones mosaics are dominated by features smaller than the rms displacement for either the tracking or the non-tracking cones.

Metrics