Abstract

The design of the laser-guide-star-based adaptive optics (AO) systems for the Extremely Large Telescopes requires careful study of the issue of elongated spots produced on Shack–Hartmann wavefront sensors. The importance of a correct modeling of the nonuniformity and correlations of the noise induced by this elongation has already been demonstrated for wavefront reconstruction. We report here on the first (to our knowledge) end-to-end simulations of closed-loop ground-layer AO with laser guide stars with such an improved noise model. The results are compared with the level of performance predicted by a classical noise model for the reconstruction. The performance is studied in terms of ensquared energy and confirms that, thanks to the improved noise model, central or side launching of the lasers does not affect the performance with respect to the laser guide stars’ flux. These two launching schemes also perform similarly whatever the atmospheric turbulence strength.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Quasi-static aberrations induced by laser guide stars in adaptive optics

Marcos A. van Dam, Antonin H. Bouchez, David Le Mignant, and Peter L. Wizinowich
Opt. Express 14(17) 7535-7540 (2006)

Modeling low order aberrations in laser guide star adaptive optics systems

Richard M. Clare, Marcos A. van Dam, and Antonin H. Bouchez
Opt. Express 15(8) 4711-4725 (2007)

Optimizing Rayleigh laser guide star range-gate depth during initial loop closing

T. J. Morris and R. W. Wilson
Opt. Lett. 32(14) 2004-2006 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription