Abstract

Quantification of tissue morphology and biomarker distribution by means of optoacoustic tomography is an important and longstanding challenge, mainly caused by the complex heterogeneous structure of biological tissues as well as the lack of accurate and robust reconstruction algorithms. The recently introduced model-based inversion approaches were shown to mitigate some of reconstruction artifacts associated with the commonly used back-projection schemes, while providing an excellent platform for obtaining quantified maps of optical energy deposition in experimental configurations of various complexity. In this work, we introduce a weighted model-based approach, capable of overcoming reconstruction challenges caused by per-projection variations of object’s illumination and other partial illumination effects. The universal weighting procedure is equally shown to reduce reconstruction artifacts associated with other experimental imperfections, such as non-uniform transducer sensitivity fields. Significant improvements in image fidelity and quantification are showcased both numerically and experimentally on tissue phantoms and mice.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).
  2. R. A. Kruger, P. Y. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—Reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
    [CrossRef] [PubMed]
  3. L. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
    [CrossRef]
  4. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
    [CrossRef] [PubMed]
  5. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
    [CrossRef] [PubMed]
  6. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878–888 (2006).
    [CrossRef]
  7. M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 72, 016706 (2005).
    [CrossRef]
  8. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
    [CrossRef]
  9. J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” Journal of Biophotonics 2, 701–717 (2009).
    [CrossRef] [PubMed]
  10. L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo,” Opt. Lett. 35, 1482–1484 (2010).
    [CrossRef] [PubMed]
  11. A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
    [CrossRef] [PubMed]
  12. A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express 18, 19592–19602 (2010).
    [CrossRef] [PubMed]
  13. L. Li, R. Zemp, G. Lungu, R. Ma, and L. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
    [CrossRef] [PubMed]
  14. D. Razansky, C. Vinegoni, and V. Ntziachristos, “Real-time imaging of fluorochromes in small animals,” Opt. Lett. 32, 2891–2893 (2010).
    [CrossRef]
  15. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
    [CrossRef]
  16. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).
    [CrossRef]
  17. D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34, 4293–4301 (2007).
    [CrossRef] [PubMed]
  18. A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
    [CrossRef]
  19. R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
    [CrossRef] [PubMed]
  20. H. Zhang, K. Maslov, G. Stoica, and L. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
    [CrossRef] [PubMed]
  21. P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, and G. Paltauf, “Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors,” Proc. SPIE 6437, 643721–643724 (2007).
    [CrossRef]
  22. G. Golub, Matrix Computations, 3rd ed. (Johns Hopkins University Press, 1996).
  23. C. C. Paige and M. A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
    [CrossRef]
  24. T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
    [CrossRef]
  25. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  26. W. Bangerth, R. Hartmann, and G. Kanschat, “deal. II—A general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, Article 24 (2007).
    [CrossRef]

2010

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
[CrossRef] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Real-time imaging of fluorochromes in small animals,” Opt. Lett. 32, 2891–2893 (2010).
[CrossRef]

L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo,” Opt. Lett. 35, 1482–1484 (2010).
[CrossRef] [PubMed]

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
[CrossRef] [PubMed]

A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express 18, 19592–19602 (2010).
[CrossRef] [PubMed]

2009

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).
[CrossRef]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
[CrossRef] [PubMed]

A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
[CrossRef]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
[CrossRef]

L. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
[CrossRef]

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” Journal of Biophotonics 2, 701–717 (2009).
[CrossRef] [PubMed]

2007

L. Li, R. Zemp, G. Lungu, R. Ma, and L. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[CrossRef]

W. Bangerth, R. Hartmann, and G. Kanschat, “deal. II—A general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, Article 24 (2007).
[CrossRef]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34, 4293–4301 (2007).
[CrossRef] [PubMed]

P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, and G. Paltauf, “Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors,” Proc. SPIE 6437, 643721–643724 (2007).
[CrossRef]

2006

H. Zhang, K. Maslov, G. Stoica, and L. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[CrossRef] [PubMed]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878–888 (2006).
[CrossRef]

2005

M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 72, 016706 (2005).
[CrossRef]

1996

G. Golub, Matrix Computations, 3rd ed. (Johns Hopkins University Press, 1996).

1995

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

R. A. Kruger, P. Y. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—Reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

1994

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

1982

C. C. Paige and M. A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
[CrossRef]

Appledorn, C. R.

R. A. Kruger, P. Y. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—Reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

Arridge, S. R.

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Bangerth, W.

W. Bangerth, R. Hartmann, and G. Kanschat, “deal. II—A general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, Article 24 (2007).
[CrossRef]

Beard, P.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[CrossRef]

Beard, P. C.

Brecht, H. -P.

A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
[CrossRef]

Buehler, A.

Burgholzer, P.

P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, and G. Paltauf, “Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors,” Proc. SPIE 6437, 643721–643724 (2007).
[CrossRef]

Conjusteau, A.

A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
[CrossRef]

Cox, B. T.

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[CrossRef]

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[CrossRef]

Englmeier, K.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
[CrossRef]

Ermilov, S. A.

A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
[CrossRef]

Esenaliev, R. O.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Fang, Y. R.

R. A. Kruger, P. Y. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—Reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

Fronheiser, M. P.

A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
[CrossRef]

Golub, G.

G. Golub, Matrix Computations, 3rd ed. (Johns Hopkins University Press, 1996).

Grün, H.

P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, and G. Paltauf, “Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors,” Proc. SPIE 6437, 643721–643724 (2007).
[CrossRef]

Gu, X.

Haltmeier, M.

P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, and G. Paltauf, “Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors,” Proc. SPIE 6437, 643721–643724 (2007).
[CrossRef]

Hartmann, R.

W. Bangerth, R. Hartmann, and G. Kanschat, “deal. II—A general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, Article 24 (2007).
[CrossRef]

Herzog, E.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Jacques, S. L.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Jetzfellner, T.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
[CrossRef]

Jiang, H.

Jose, J.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” Journal of Biophotonics 2, 701–717 (2009).
[CrossRef] [PubMed]

Kanschat, G.

W. Bangerth, R. Hartmann, and G. Kanschat, “deal. II—A general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, Article 24 (2007).
[CrossRef]

Kolkman, R. G. M.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” Journal of Biophotonics 2, 701–717 (2009).
[CrossRef] [PubMed]

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

Kruger, R. A.

R. A. Kruger, P. Y. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—Reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

Laufer, J.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[CrossRef]

Li, L.

L. Li, R. Zemp, G. Lungu, R. Ma, and L. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

Liu, P. Y.

R. A. Kruger, P. Y. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—Reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

Lungu, G.

L. Li, R. Zemp, G. Lungu, R. Ma, and L. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
[CrossRef] [PubMed]

L. Li, R. Zemp, G. Lungu, R. Ma, and L. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

Manohar, S.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” Journal of Biophotonics 2, 701–717 (2009).
[CrossRef] [PubMed]

Maslov, K.

L. Song, K. Maslov, and L. V. Wang, “Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo,” Opt. Lett. 35, 1482–1484 (2010).
[CrossRef] [PubMed]

H. Zhang, K. Maslov, G. Stoica, and L. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[CrossRef] [PubMed]

Ntziachristos, V.

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Real-time imaging of fluorochromes in small animals,” Opt. Lett. 32, 2891–2893 (2010).
[CrossRef]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[CrossRef] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
[CrossRef] [PubMed]

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
[CrossRef] [PubMed]

A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express 18, 19592–19602 (2010).
[CrossRef] [PubMed]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
[CrossRef] [PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
[CrossRef]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34, 4293–4301 (2007).
[CrossRef] [PubMed]

Nuster, R.

P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, and G. Paltauf, “Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors,” Proc. SPIE 6437, 643721–643724 (2007).
[CrossRef]

Oraevsky, A. A.

A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
[CrossRef]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Paige, C. C.

C. C. Paige and M. A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
[CrossRef]

Paltauf, G.

P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, and G. Paltauf, “Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors,” Proc. SPIE 6437, 643721–643724 (2007).
[CrossRef]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

Razansky, D.

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
[CrossRef] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[CrossRef] [PubMed]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Real-time imaging of fluorochromes in small animals,” Opt. Lett. 32, 2891–2893 (2010).
[CrossRef]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

A. Taruttis, E. Herzog, D. Razansky, and V. Ntziachristos, “Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography,” Opt. Express 18, 19592–19602 (2010).
[CrossRef] [PubMed]

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35, 2475–2477 (2010).
[CrossRef] [PubMed]

R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express 17, 21414–21426 (2009).
[CrossRef] [PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
[CrossRef]

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34, 4293–4301 (2007).
[CrossRef] [PubMed]

Rosenthal, A.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[CrossRef] [PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
[CrossRef]

Saunders, M. A.

C. C. Paige and M. A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
[CrossRef]

Schulz, R.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
[CrossRef]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Song, L.

Steenbergen, W.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” Journal of Biophotonics 2, 701–717 (2009).
[CrossRef] [PubMed]

Stoica, G.

H. Zhang, K. Maslov, G. Stoica, and L. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[CrossRef] [PubMed]

Su, R.

A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
[CrossRef]

Taruttis, A.

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

van Leeuwen, T. G.

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” Journal of Biophotonics 2, 701–717 (2009).
[CrossRef] [PubMed]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

D. Razansky, C. Vinegoni, and V. Ntziachristos, “Real-time imaging of fluorochromes in small animals,” Opt. Lett. 32, 2891–2893 (2010).
[CrossRef]

Wang, L.

L. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
[CrossRef]

L. Li, R. Zemp, G. Lungu, R. Ma, and L. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

H. Zhang, K. Maslov, G. Stoica, and L. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[CrossRef] [PubMed]

Wang, L. V.

Xu, M.

M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 72, 016706 (2005).
[CrossRef]

Yuan, Z.

Zemp, R.

L. Li, R. Zemp, G. Lungu, R. Ma, and L. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, K. Maslov, G. Stoica, and L. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[CrossRef] [PubMed]

ACM Trans. Math. Softw.

C. C. Paige and M. A. Saunders, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares,” ACM Trans. Math. Softw. 8, 43–71 (1982).
[CrossRef]

W. Bangerth, R. Hartmann, and G. Kanschat, “deal. II—A general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, Article 24 (2007).
[CrossRef]

Appl. Phys. Lett.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703-1–013703-3 (2009).
[CrossRef]

Chem. Rev.

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29, 1275–1285 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt.

L. Li, R. Zemp, G. Lungu, R. Ma, and L. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Journal of Biophotonics

J. Jose, S. Manohar, R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” Journal of Biophotonics 2, 701–717 (2009).
[CrossRef] [PubMed]

Med. Phys.

D. Razansky and V. Ntziachristos, “Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion,” Med. Phys. 34, 4293–4301 (2007).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

R. A. Kruger, P. Y. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)—Reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. Zhang, K. Maslov, G. Stoica, and L. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848–851 (2006).
[CrossRef] [PubMed]

Nat. Photonics

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tompgraphy of deep-seated fluorescent proteinsin vivo,” Nat. Photonics 3, 412–417 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141–168 (2007).
[CrossRef]

Phys. Rev. E

M. Xu and L. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 72, 016706 (2005).
[CrossRef]

Proc. SPIE

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

A. Conjusteau, S. A. Ermilov, R. Su, H.-P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Characterization of optoacoustic transducers through the analysis of angular-dependent frequency response,” Proc. SPIE 7177, 71770–71778 (2009).
[CrossRef]

P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, and G. Paltauf, “Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors,” Proc. SPIE 6437, 643721–643724 (2007).
[CrossRef]

Other

G. Golub, Matrix Computations, 3rd ed. (Johns Hopkins University Press, 1996).

L. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optoacoustic imaging configurations with partial or variable tomographic data. (a) Circular scanning with narrow laser beam and a rotating object. Illumination and detector are static; (b) circular scanning with ultrasonic detector having limited angular view. The imaged object and illumination are static; (c) optoacoustic microscopy (B-mode) imaging with confocal illumination-detection geometry and linear translation.

Fig. 2
Fig. 2

Structure of matrix representing the weighted forward-model approach.

Fig. 3
Fig. 3

Reconstructions of numerical tissue-mimicking phantom for the homogeneous illumination case with (a) model-based; (b) back-projection; (c) light propagation model used in the simulated partial illumination case for weighting and correction; (d) standard model-based reconstruction with partial illumination; (e) reconstruction with back-projection for partial illumination; (f) image corrected for partial illumination using the weighted model-based approach.

Fig. 4
Fig. 4

Experimental validation results. (a) Sketch of the imaged phantom; (b) the measured illumination pattern upon the object’s surface; (c) sketch of the illumination calibration phantom.

Fig. 5
Fig. 5

Model-based reconstruction for the (a) fully illuminated phantom; (b) variable partial illumination; (c) including weighting correction; (d) recovered absorption coefficient for weighted reconstruction with various assumptions for the background absorption.

Fig. 6
Fig. 6

(a) Example of the measured limited-angle sensitivity field of a single element inside a multi-element transducer array. The approximate position of the imaged mouse is indicated by the dashed circle. The object was uniformly illuminated in the imaged plane; (b) model-based reconstruction of the mouse lower abdomen without ultrasound sensitivity field correction and (c) with sensitivity field correction. The latter are observed to reduce arc artifacts (1), eliminate some of the negative values (2), and smooth grainy appearance of the image (3).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

p ( r , t ) = Γ 4 π c t R = c t H r ( r ) R d A ,
p k = M k z ,
p = M z ,
M + = ( M H M ) 1 M H .
z = M + p .
H ( r ) = μ a ( r ) U ( r ) ,
D ( r ) U ( r ) + μ a ( r ) U ( r ) = q 0 ,
U ( r ) + 2 D ( r ) n ̂ U ( r ) = 0     r Ω ,
M i j k = W k ( r j ) M i j k ,
H k ( r ) = μ a ( r ) U k ( r ) .
H k ( r ) = H ( r ) W k ( r ) ,

Metrics