Abstract

A terahertz (THz) polarization real-time imaging system that can effectively reduce experimental time consumption for acquiring a sample’s polarization information is achieved. An alternative THz polarization measurement method is proposed. In this method, a 110 zinc-blende crystal is used as the sensor, and the probe polarization is adjusted to detect THz electric fields on the two orthogonal polarization components. The relative sensitivity of the imaging system to the THz polarization angle is estimated to be less than 0.5°. To illustrate the ability of the system, two samples are designed and measured by using the system. From their THz polarization real-time images, each region of these samples can be precisely presented. Experimental results clearly show the special influences of different materials on the THz polarization. This work effectively extends the information content obtained by THz real-time imaging and improves the feasibility of the imaging technique.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005).
    [CrossRef]
  2. H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14, 9130–9141 (2006).
    [CrossRef] [PubMed]
  3. X. K. Wang, Y. Cui, W. F. Sun, Y. Zhang, and C. L. Zhang, “Terahertz pulse reflective focal-plane tomography,” Opt. Express 15, 14369–14375 (2007).
    [CrossRef] [PubMed]
  4. X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
    [CrossRef]
  5. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006).
    [CrossRef] [PubMed]
  6. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45, 2766–2772 (2006).
    [CrossRef] [PubMed]
  7. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008).
    [CrossRef] [PubMed]
  8. H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15, 11650–11657 (2007).
    [CrossRef] [PubMed]
  9. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
    [CrossRef] [PubMed]
  10. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30, 2802–2804 (2005).
    [CrossRef] [PubMed]
  11. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15, 11117–11125 (2007).
    [CrossRef] [PubMed]
  12. R. X. Zhang, Y. Cui, W. F. Sun, and Y. Zhang, “Polarization information for terahertz imaging,” Appl. Opt. 47, 6422–6427 (2008).
    [CrossRef] [PubMed]
  13. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
    [CrossRef]
  14. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun., in press; available online.
  15. Z. P. Jiang, X. G. Xu, and X.-C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. 39, 2982–2987 (2000).
    [CrossRef]
  16. Q. Chen, M. Tani, Z. P. Jiang, and X. C. Zhang, “Electro-optic transceivers for terahertz-wave applications,” J. Opt. Soc. Am. B 18, 823–831 (2001).
    [CrossRef]
  17. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  18. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007).
    [CrossRef] [PubMed]
  19. P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
    [CrossRef]
  20. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, “Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures,” Opt. Express 16, 7407–7417 (2008).
    [CrossRef] [PubMed]
  21. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16, 20484–20489 (2008).
    [CrossRef] [PubMed]

2009 (2)

X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
[CrossRef]

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

2008 (4)

2007 (5)

2006 (3)

2005 (2)

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005).
[CrossRef]

N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30, 2802–2804 (2005).
[CrossRef] [PubMed]

2001 (2)

2000 (1)

1990 (1)

Adam, A. J. L.

Ahn, K. J.

Bakker, H. J.

Beigang, R.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Brok, J. M.

Castro-Camus, E.

Chen, Q.

Cui, Y.

X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
[CrossRef]

R. X. Zhang, Y. Cui, W. F. Sun, and Y. Zhang, “Polarization information for terahertz imaging,” Appl. Opt. 47, 6422–6427 (2008).
[CrossRef] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, Y. Zhang, and C. L. Zhang, “Terahertz pulse reflective focal-plane tomography,” Opt. Express 15, 14369–14375 (2007).
[CrossRef] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun., in press; available online.

Fattinger, Ch.

Fedosejevs, R.

Fu, L.

Fukushima, K.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005).
[CrossRef]

Gallot, G.

Grischkowsky, D.

Hangyo, M.

Hirota, Y.

Hsieh, C. -F.

Hu, D.

X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
[CrossRef]

Imhof, C.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Jagadish, C.

Jeoung, S. C.

Jiang, Z. P.

Johnston, M. B.

Kanda, N.

Kang, J. H.

Kawase, K.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005).
[CrossRef]

Keiding, S.

Kim, D. S.

Konishi, K.

Kuwata-Gonokami, M.

Lai, Y. -C.

Lee, J. W.

Lloyd-Hughes, J.

Makabe, H.

Masson, J. -B.

Nagel, M.

Nienhuys, H. -K.

Otani, C.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005).
[CrossRef]

Pan, C. -L.

Pan, R. -P.

Park, Q. H.

Paul, O.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Planken, P. C. M.

Rahm, M.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Redo-Sanchez, A.

Reid, M.

Seo, M. A.

Sun, W. F.

X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
[CrossRef]

R. X. Zhang, Y. Cui, W. F. Sun, and Y. Zhang, “Polarization information for terahertz imaging,” Appl. Opt. 47, 6422–6427 (2008).
[CrossRef] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, Y. Zhang, and C. L. Zhang, “Terahertz pulse reflective focal-plane tomography,” Opt. Express 15, 14369–14375 (2007).
[CrossRef] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun., in press; available online.

Tan, H. H.

Tani, M.

Usami, M.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005).
[CrossRef]

van der Marel, W. A. M.

van der Valk, N. C. J.

van Exter, M.

Wang, X. K.

X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
[CrossRef]

X. K. Wang, Y. Cui, W. F. Sun, Y. Zhang, and C. L. Zhang, “Terahertz pulse reflective focal-plane tomography,” Opt. Express 15, 14369–14375 (2007).
[CrossRef] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun., in press; available online.

Weis, P.

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

Wenckebach, T.

Xu, X. G.

Yamashita, M.

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005).
[CrossRef]

Ye, J. S.

X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
[CrossRef]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun., in press; available online.

Zhang, C. L.

Zhang, R. X.

Zhang, X. C.

Zhang, X. -C.

Zhang, Y.

X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
[CrossRef]

R. X. Zhang, Y. Cui, W. F. Sun, and Y. Zhang, “Polarization information for terahertz imaging,” Appl. Opt. 47, 6422–6427 (2008).
[CrossRef] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, Y. Zhang, and C. L. Zhang, “Terahertz pulse reflective focal-plane tomography,” Opt. Express 15, 14369–14375 (2007).
[CrossRef] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun., in press; available online.

Zhong, H.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, “Strongly birefringent metamaterials as negative index terahertz wave plates,” Appl. Phys. Lett. 95, 171104 (2009).
[CrossRef]

M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

X. K. Wang, Y. Cui, D. Hu, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282, 4683–4687 (2009).
[CrossRef]

Opt. Express (8)

H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14, 9130–9141 (2006).
[CrossRef] [PubMed]

X. K. Wang, Y. Cui, W. F. Sun, Y. Zhang, and C. L. Zhang, “Terahertz pulse reflective focal-plane tomography,” Opt. Express 15, 14369–14375 (2007).
[CrossRef] [PubMed]

H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15, 11650–11657 (2007).
[CrossRef] [PubMed]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047–7057 (2007).
[CrossRef] [PubMed]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15, 11781–11789 (2007).
[CrossRef] [PubMed]

A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken, “Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures,” Opt. Express 16, 7407–7417 (2008).
[CrossRef] [PubMed]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16, 20484–20489 (2008).
[CrossRef] [PubMed]

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15, 11117–11125 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (1)

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun., in press; available online.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic setup of the detection system: HWP, half-wave plate; BS, beam splitter; QWP, quarter-wave plate; PBS, Wollaston prism; WG, THz wire grating polarizer; L1 and L2, lenses. The inset shows the relationship between the orientation of the WG and two polarization components of THz waves.

Fig. 2
Fig. 2

(a) Normalized transmitted THz peak amplitudes (open squares and circles) on X and Y axes as rotating the WG and theoretical results (solid red and green lines) calculated by using Eqs. (7, 8). (b) Relative changes in the measured THz polarization angle (open triangles) for rotations of the WG by 1° steps from 0° to 10° (solid pink line).

Fig. 3
Fig. 3

(a) THz temporal signal in the air, and (b)–(d) transmitted THz signals after passing through a quartz glass, a common glass, and a quartz crystal. The blue dashed lines and the red solid lines are the horizontal and the vertical THz electric fields, respectively.

Fig. 4
Fig. 4

Relative intensity differences between the two THz polarization components as a function of frequency for propagation through the air, the quartz glass, the common glass, and the quartz crystal. The purple dashed line is the calculated result by using Eqs. (9, 10).

Fig. 5
Fig. 5

(a) Photo of the samples, including 1. air, 2. quartz glass, 3. common glass, and 4. quartz crystal. (b) and (c) are transmitted THz intensities on the horizontal and vertical polarization vectors at 0.55 THz.

Fig. 6
Fig. 6

Distributions of (a) the energy ratio and (b) the polarization angle at 0.55 THz obtained by processing Figs. 5b, 5c.

Fig. 7
Fig. 7

(a) Photo of the second sample. (b) and (c) are distributions of the energy ratio and the polarization angle of the second sample in the two polarization components.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( α , φ ) = I p ω n 3 E THz r 41 L 2 c ( cos   α   sin   2 φ + 2   sin   α   cos   2 φ ) ,
I ( α = 90 ° , φ = 0 ° ) = 2 H ,
I ( α = 0 ° , φ = 0 ° ) = 0 ,
I ( α = 90 ° , φ = 45 ° ) = 0 ,
I ( α = 0 ° , φ = 45 ° ) = H ,
H = I p ω n 3 E THz r 41 L 2 c .
E x = E i THz   cos   θ   cos   θ ,
E y = E i THz   cos   θ   sin   θ .
E x = E i THz [ cos ( ω Δ n d 2 c ) + j   sin ( ω Δ n d 2 c ) cos ( 2 β ) ] ,
E y = E i THz [ j   sin ( ω Δ n d 2 c ) sin ( 2 β ) ] ,

Metrics