S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006).

[CrossRef]

Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

M. C. Lai, “A simple compact fourth-order Poisson solver on polar geometry,” J. Comput. Phys. 182, 337–345 (2002).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

A. Tonomura, “Direct observation of vortex motion in high-Tc superconductors by Lorentz microscopy,” Physica B 280, 227–228 (2000).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

L. a. Y. D. Hageman, Applied Iterative Methods (Academic, 1981).

A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comput. 31, 333–390 (1977).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

R. W. Hockney, “A fast direct solution of Poisson’s equation using Fourier analysis,” J. Assoc. Comput. Mach. 12, 95–113 (1965).

[CrossRef]

v. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica (Amsterdam) 1, 689–704 (1934).

[CrossRef]

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comput. 31, 333–390 (1977).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995).

[CrossRef]

L. a. Y. D. Hageman, Applied Iterative Methods (Academic, 1981).

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

R. W. Hockney, “A fast direct solution of Poisson’s equation using Fourier analysis,” J. Assoc. Comput. Mach. 12, 95–113 (1965).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.

M. C. Lai, “A simple compact fourth-order Poisson solver on polar geometry,” J. Comput. Phys. 182, 337–345 (2002).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).

[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).

[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006).

[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

A. Tonomura, “Direct observation of vortex motion in high-Tc superconductors by Lorentz microscopy,” Physica B 280, 227–228 (2000).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006).

[CrossRef]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

v. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica (Amsterdam) 1, 689–704 (1934).

[CrossRef]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

R. W. Hockney, “A fast direct solution of Poisson’s equation using Fourier analysis,” J. Assoc. Comput. Mach. 12, 95–113 (1965).

[CrossRef]

M. C. Lai, “A simple compact fourth-order Poisson solver on polar geometry,” J. Comput. Phys. 182, 337–345 (2002).

[CrossRef]

R. P. Millane, “Phase retrieval in crystallography and optics,” J. Opt. Soc. Am. A 7, 394–411 (1990).

[CrossRef]

C. Roddier and F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993).

[CrossRef]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comput. 31, 333–390 (1977).

[CrossRef]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[CrossRef]

S. Gruppetta, L. Koechlin, F. Lacombe, and P. Puget, “Curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye,” Opt. Lett. 30, 2757–2759 (2005).

[CrossRef]
[PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).

[CrossRef]

v. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica (Amsterdam) 1, 689–704 (1934).

[CrossRef]

A. Tonomura, “Direct observation of vortex motion in high-Tc superconductors by Lorentz microscopy,” Physica B 280, 227–228 (2000).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.

L. a. Y. D. Hageman, Applied Iterative Methods (Academic, 1981).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).