S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.

S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006).

[CrossRef]

M. C. Lai, “A simple compact fourth-order Poisson solver on polar geometry,” J. Comput. Phys. 182, 337–345 (2002).

[CrossRef]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

A. Tonomura, “Direct observation of vortex motion in high-Tc superconductors by Lorentz microscopy,” Physica B 280, 227–228 (2000).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

L. a. Y. D. Hageman, Applied Iterative Methods (Academic, 1981).

A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comput. 31, 333–390 (1977).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

R. W. Hockney, “A fast direct solution of Poisson’s equation using Fourier analysis,” J. Assoc. Comput. Mach. 12, 95–113 (1965).

[CrossRef]

v. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica (Amsterdam) 1, 689–704 (1934).

[CrossRef]

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comput. 31, 333–390 (1977).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996).

[CrossRef]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995).

[CrossRef]

L. a. Y. D. Hageman, Applied Iterative Methods (Academic, 1981).

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

R. W. Hockney, “A fast direct solution of Poisson’s equation using Fourier analysis,” J. Assoc. Comput. Mach. 12, 95–113 (1965).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.

M. C. Lai, “A simple compact fourth-order Poisson solver on polar geometry,” J. Comput. Phys. 182, 337–345 (2002).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996).

[CrossRef]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).

[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006).

[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

A. Tonomura, “Direct observation of vortex motion in high-Tc superconductors by Lorentz microscopy,” Physica B 280, 227–228 (2000).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006).

[CrossRef]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).

v. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica (Amsterdam) 1, 689–704 (1934).

[CrossRef]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

S. Vinikman-Pinhasi and E. N. Ribak, “Piezoelectric and piezooptic effects in porous silicon,” Appl. Phys. Lett. 88, 111905 (2006).

[CrossRef]

M. Werdiger, S. Eliezer, Z. Henis, B. Arad, Y. Horovitz, R. Shpitalnik, and S. Maman, “Off-axis holography of laser-induced shock wave targets,” Appl. Phys. Lett. 71, 211–212 (1997).

[CrossRef]

R. W. Hockney, “A fast direct solution of Poisson’s equation using Fourier analysis,” J. Assoc. Comput. Mach. 12, 95–113 (1965).

[CrossRef]

M. C. Lai, “A simple compact fourth-order Poisson solver on polar geometry,” J. Comput. Phys. 182, 337–345 (2002).

[CrossRef]

R. P. Millane, “Phase retrieval in crystallography and optics,” J. Opt. Soc. Am. A 7, 394–411 (1990).

[CrossRef]

C. Roddier and F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993).

[CrossRef]

T. E. Gureyev, A. Roberts, and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials,” J. Opt. Soc. Am. A 12, 1932–1942 (1995).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination,” J. Opt. Soc. Am. A 13, 1670–1682 (1996).

[CrossRef]

M. Werdiger, S. Eliezer, S. Maman, Y. Horovitz, B. Arad, Z. Henis, and I. B. Goldberg, “Development of holographic methods for investigating a moving free surface, accelerated by laser-induced shock waves,” Laser Part. Beams 17, 653–660 (1999).

[CrossRef]

A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Math. Comput. 31, 333–390 (1977).

[CrossRef]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33, 411–416 (2002).

[CrossRef]
[PubMed]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

T. E. Gureyev and K. A. Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133, 339–346 (1997).

[CrossRef]

S. Gruppetta, L. Koechlin, F. Lacombe, and P. Puget, “Curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye,” Opt. Lett. 30, 2757–2759 (2005).

[CrossRef]
[PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

R. A. Sweet, W. L. Briggs, S. Oliveira, J. L. Porsche, and T. Turnbull, “FFTs and three-dimensional Poisson solvers for hypercubes,” Parallel Comput. 17, 121–131 (1991).

[CrossRef]

S. V. Pinhasi, R. Alimi, S. Eliezer, and L. Perelmutter, “Fast optical computerized topography,” Phys. Lett. A 374, 2798–2800 (2010).

[CrossRef]

K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x rays,” Phys. Rev. Lett. 77, 2961–2964 (1996).

[CrossRef]
[PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).

[CrossRef]

v. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica (Amsterdam) 1, 689–704 (1934).

[CrossRef]

A. Tonomura, “Direct observation of vortex motion in high-Tc superconductors by Lorentz microscopy,” Physica B 280, 227–228 (2000).

[CrossRef]

S. Bajt, A. Barty, K. A. Nugent, M. McCartney, M. Wall, and D. Paganin, “Quantitative phase-sensitive imaging in a transmission electron microscope,” Ultramicroscopy 83, 67–73 (2000).

[CrossRef]
[PubMed]

Z. Pek’arek and R. Hrach, “A comparison of advanced Poisson equation solvers applied to the particle-in-cell plasma model,” in WDS’06 Proceedings (2006), pp. 187–192.

L. a. Y. D. Hageman, Applied Iterative Methods (Academic, 1981).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1970).