Abstract

For a one-dimensional (1D) anisotropic slab, if its electromagnetic parameters satisfy certain conditions, an incident wave can be totally transmitted without any reflections. In this work, a classical method based on analytical results and a transformation optics method using an arbitrary piecewise continuous transformation function are applied to design a 1D electromagnetic transparent wall, whose presence does not disturb the field distribution in the ambient environment. Material parameters and the geometrical requirement of the layered structure using these two different methods are derived, and they agree well with each other. Full-wave simulations validate the transparency of the proposed wall. Because of the simple constitutive parameters and geometry, a transparent structure could be realized using anisotropic and homogeneous materials. The proposed structure has potential applications in radomes, anti-reflection films, and various sensor sectors.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef] [PubMed]
  3. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
    [CrossRef]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
    [CrossRef]
  5. Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
    [CrossRef] [PubMed]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
    [CrossRef]
  7. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
    [CrossRef] [PubMed]
  8. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009).
    [CrossRef]
  9. J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
    [CrossRef]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [CrossRef] [PubMed]
  11. H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
    [CrossRef]
  12. H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
    [CrossRef] [PubMed]
  13. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Mater. 9, 129–132 (2009).
    [CrossRef]
  14. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
    [CrossRef] [PubMed]
  15. Z. L. Mei and T. J. Cui, “Design of transparent cloaks with optical transformation,” in Proceedings of the 2008 International Workshop on Metamaterials (IEEE, 2008), pp. 137–139.
  16. G. X. Yu, T. J. Cui, and W. Jiang, “Design of transparent structure using metamaterial,” J. Infrared Milli. Terahz Waves 30, 633–641 (2009).
    [CrossRef]
  17. Z. L. Mei and T. J. Cui, “Transparent shells-invisible to electromagnetic waves,” Prog. Electromagn. Res. B 18, 149–163 (2009).
    [CrossRef]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  19. L. Zhao and T. J. Cui, “Super-resolution imaging of dielectric objects using a slab of left-handed material,” Appl. Phys. Lett. 89, 141904 (2006).
    [CrossRef]
  20. T. J. Cui and Q. Cheng, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2004).
    [CrossRef]
  21. G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).
    [CrossRef]
  22. A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
    [CrossRef]
  23. A. Alù, M. G. Silveirinha, A. Salandnno, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
    [CrossRef]
  24. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling, and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
    [CrossRef]
  25. J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
    [CrossRef]
  26. W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101(R) (2009).
    [CrossRef]
  27. W. Yan, M. Yan, and M. Qiu, “Generalized compensated bilayer structure from the transformation optics perspective,” J. Opt. Soc. Am. B 26, B39–B49 (2009).
    [CrossRef]
  28. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
    [CrossRef]
  29. I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010).
    [CrossRef]
  30. M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
    [CrossRef]
  31. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
    [CrossRef]
  32. Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).
    [CrossRef]
  33. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
    [CrossRef] [PubMed]
  34. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [CrossRef]
  35. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
    [CrossRef] [PubMed]
  36. B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
    [CrossRef]
  37. Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404 (2003).
    [CrossRef] [PubMed]
  38. Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B 69, 115402 (2004).
    [CrossRef]

2010 (1)

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010).
[CrossRef]

2009 (12)

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101(R) (2009).
[CrossRef]

W. Yan, M. Yan, and M. Qiu, “Generalized compensated bilayer structure from the transformation optics perspective,” J. Opt. Soc. Am. B 26, B39–B49 (2009).
[CrossRef]

Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009).
[CrossRef]

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[CrossRef] [PubMed]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Mater. 9, 129–132 (2009).
[CrossRef]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

G. X. Yu, T. J. Cui, and W. Jiang, “Design of transparent structure using metamaterial,” J. Infrared Milli. Terahz Waves 30, 633–641 (2009).
[CrossRef]

Z. L. Mei and T. J. Cui, “Transparent shells-invisible to electromagnetic waves,” Prog. Electromagn. Res. B 18, 149–163 (2009).
[CrossRef]

2008 (5)

Z. L. Mei and T. J. Cui, “Design of transparent cloaks with optical transformation,” in Proceedings of the 2008 International Workshop on Metamaterials (IEEE, 2008), pp. 137–139.

J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

2007 (4)

Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
[CrossRef] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandnno, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

2006 (7)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

L. Zhao and T. J. Cui, “Super-resolution imaging of dielectric objects using a slab of left-handed material,” Appl. Phys. Lett. 89, 141904 (2006).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).
[CrossRef]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[CrossRef]

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[CrossRef] [PubMed]

2005 (1)

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[CrossRef]

2004 (2)

T. J. Cui and Q. Cheng, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2004).
[CrossRef]

Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B 69, 115402 (2004).
[CrossRef]

2003 (2)

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling, and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

1996 (1)

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

1995 (1)

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).
[CrossRef]

Alù, A.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandnno, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[CrossRef]

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling, and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

Ao, X.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Bilotti, F.

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[CrossRef]

Burghignoli, P.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Capolino, F.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009).
[CrossRef]

Castaldi, G.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010).
[CrossRef]

Chan, C. T.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

Chen, H.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
[CrossRef]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

Chen, H. S.

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

Chen, S.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[CrossRef] [PubMed]

Chen, Y.

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

Cheng, Q.

T. J. Cui and Q. Cheng, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2004).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Chui, S. T.

Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B 69, 115402 (2004).
[CrossRef]

Cui, T. J.

G. X. Yu, T. J. Cui, and W. Jiang, “Design of transparent structure using metamaterial,” J. Infrared Milli. Terahz Waves 30, 633–641 (2009).
[CrossRef]

Z. L. Mei and T. J. Cui, “Transparent shells-invisible to electromagnetic waves,” Prog. Electromagn. Res. B 18, 149–163 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Z. L. Mei and T. J. Cui, “Design of transparent cloaks with optical transformation,” in Proceedings of the 2008 International Workshop on Metamaterials (IEEE, 2008), pp. 137–139.

L. Zhao and T. J. Cui, “Super-resolution imaging of dielectric objects using a slab of left-handed material,” Appl. Phys. Lett. 89, 141904 (2006).
[CrossRef]

T. J. Cui and Q. Cheng, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2004).
[CrossRef]

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Engheta, N.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandnno, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[CrossRef]

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling, and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

Feng, Y.

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007).
[CrossRef] [PubMed]

Fluegel, B.

Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009).
[CrossRef]

Galdi, V.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010).
[CrossRef]

Gallina, I.

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010).
[CrossRef]

Gedney, S. D.

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

Han, D.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Hou, B.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[CrossRef] [PubMed]

Huang, Y.

Huangfu, J.

J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
[CrossRef]

Jackson, D. R.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Jiang, T.

Jiang, W.

G. X. Yu, T. J. Cui, and W. Jiang, “Design of transparent structure using metamaterial,” J. Infrared Milli. Terahz Waves 30, 633–641 (2009).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Kingsland, D. M.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).
[CrossRef]

Kong, J. A.

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
[CrossRef]

Kundtz, N.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Mater. 9, 129–132 (2009).
[CrossRef]

Lai, Y.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Lee, J.-F.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).
[CrossRef]

Lee, R.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Lin, Z.

Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B 69, 115402 (2004).
[CrossRef]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B 69, 115402 (2004).
[CrossRef]

Lovat, G.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).
[CrossRef]

Luo, Y.

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
[CrossRef]

Mascarenhas, A.

Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

Mei, Z. L.

Z. L. Mei and T. J. Cui, “Transparent shells-invisible to electromagnetic waves,” Prog. Electromagn. Res. B 18, 149–163 (2009).
[CrossRef]

Z. L. Mei and T. J. Cui, “Design of transparent cloaks with optical transformation,” in Proceedings of the 2008 International Workshop on Metamaterials (IEEE, 2008), pp. 137–139.

Milton, G. W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Ng, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009).
[CrossRef]

Qiu, M.

W. Yan, M. Yan, and M. Qiu, “Generalized compensated bilayer structure from the transformation optics perspective,” J. Opt. Soc. Am. B 26, B39–B49 (2009).
[CrossRef]

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101(R) (2009).
[CrossRef]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Ran, L. X.

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Sacks, Z. S.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).
[CrossRef]

Salandnno, A.

A. Alù, M. G. Silveirinha, A. Salandnno, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[CrossRef] [PubMed]

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[CrossRef]

Shalaev, V. M.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandnno, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Mater. 9, 129–132 (2009).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006).
[CrossRef] [PubMed]

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Smolyaninova, V. N.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Vegni, L.

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[CrossRef]

Wang, M. Y.

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

Wen, W.

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[CrossRef] [PubMed]

Wilton, D. R.

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).
[CrossRef]

Wood, B.

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

Wu, B. I.

J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
[CrossRef]

Xi, S.

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

Xiao, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Yan, M.

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101(R) (2009).
[CrossRef]

W. Yan, M. Yan, and M. Qiu, “Generalized compensated bilayer structure from the transformation optics perspective,” J. Opt. Soc. Am. B 26, B39–B49 (2009).
[CrossRef]

Yan, W.

W. Yan, M. Yan, and M. Qiu, “Generalized compensated bilayer structure from the transformation optics perspective,” J. Opt. Soc. Am. B 26, B39–B49 (2009).
[CrossRef]

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101(R) (2009).
[CrossRef]

Yu, G. X.

G. X. Yu, T. J. Cui, and W. Jiang, “Design of transparent structure using metamaterial,” J. Infrared Milli. Terahz Waves 30, 633–641 (2009).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, J.

J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
[CrossRef]

Zhang, J. J.

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, Y.

Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

Zhang, Z.

Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

Zhao, L.

L. Zhao and T. J. Cui, “Super-resolution imaging of dielectric objects using a slab of left-handed material,” Appl. Phys. Lett. 89, 141904 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

H. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007).
[CrossRef]

L. Zhao and T. J. Cui, “Super-resolution imaging of dielectric objects using a slab of left-handed material,” Appl. Phys. Lett. 89, 141904 (2006).
[CrossRef]

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[CrossRef]

IEEE Trans. Antennas Propag. (5)

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).
[CrossRef]

G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).
[CrossRef]

A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag. 54, 1632–1643 (2006).
[CrossRef]

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling, and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. Infrared Milli. Terahz Waves (1)

G. X. Yu, T. J. Cui, and W. Jiang, “Design of transparent structure using metamaterial,” J. Infrared Milli. Terahz Waves 30, 633–641 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009).
[CrossRef]

Nature Mater. (2)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Mater. 9, 129–132 (2009).
[CrossRef]

New J. Phys. (1)

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[CrossRef]

Opt. Express (2)

Photonics Nanostruct. Fundam. Appl. (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Phys. Rev. B (7)

J. Zhang, J. Huangfu, Y. Luo, H. Chen, J. A. Kong, and B. I. Wu, “Cloak for multilayered and gradually changing media,” Phys. Rev. B 77, 035116 (2008).
[CrossRef]

W. Yan, M. Yan, and M. Qiu, “Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens,” Phys. Rev. B 79, 161101(R) (2009).
[CrossRef]

B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
[CrossRef]

I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandnno, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
[CrossRef]

T. J. Cui and Q. Cheng, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2004).
[CrossRef]

Z. Liu, Z. Lin, and S. T. Chui, “Negative refraction and omnidirectional total transmission at a planar interface associated with a uniaxial medium,” Phys. Rev. B 69, 115402 (2004).
[CrossRef]

Phys. Rev. Lett. (6)

Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404 (2003).
[CrossRef] [PubMed]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009).
[CrossRef] [PubMed]

H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009).
[CrossRef] [PubMed]

PIER (1)

M. Y. Wang, J. J. Zhang, H. S. Chen, Y. Luo, S. Xi, L. X. Ran, and J. A. Kong, “Design and application of a beam shifter by transformation media,” PIER 83, 147–155 (2008).
[CrossRef]

Prog. Electromagn. Res. B (1)

Z. L. Mei and T. J. Cui, “Transparent shells-invisible to electromagnetic waves,” Prog. Electromagn. Res. B 18, 149–163 (2009).
[CrossRef]

Science (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Other (1)

Z. L. Mei and T. J. Cui, “Design of transparent cloaks with optical transformation,” in Proceedings of the 2008 International Workshop on Metamaterials (IEEE, 2008), pp. 137–139.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TM wave with an incidence angle θ passing through an anisotropic slab with thickness of d in the x O y plane.

Fig. 2
Fig. 2

Structure made of N-layer anisotropic slabs. If the EM parameters and the thickness of each slab satisfy certain conditions, the structure will become an EM-transparent wall.

Fig. 3
Fig. 3

Two spaces and the transformation function in the design process. (a) The original vacuum space. (b) The transformed space. The region defined by a x b in (a) is transformed into the region defined by a x b (shaded) in (b). (c) The arbitrary and continuous transformation function x = f ( x ) with f ( a ) = a and f ( b ) = b .

Fig. 4
Fig. 4

The piecewise continuous function selected to approximate the transformation function shown in Fig. 3c.

Fig. 5
Fig. 5

Electric field distributions in different situations. (a) A Gaussian beam with an incidence angle of θ = tan 1 ( 3 7 ) propagating in the vacuum space. (b) The same Gaussian beam passing through an anisotropic slab with thickness of 0.4 m whose parameters are μ x = 3 , μ y = 1 3 , and ε z = 1 3 . (c) Electric field distribution of an EM transparent wall made of two-layer anisotropic slabs. The parameters and thickness of each slab satisfy Eqs. (13, 16). Frequency = 2 GHz .

Fig. 6
Fig. 6

The distribution of E z . The solid curve and the curve of diamonds correspond to E z at x = 0.3 for the vacuum and EMTW case in Figs. 5a, 5c, respectively. The dashed–dotted curve (green online) and the curve of plus signs (blue online) correspond to E z at x = 0.1 + 0.4 3 in the vacuum and x = 0.3 in the anisotropic case, respectively. The curve of circles (blue online) and the dotted curve (red online) correspond to the E z distribution in the anisotropic and EMTW cases with electric and magnetic loss tangents of 0.01, respectively.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

{ x ( E y ) y ( E x ) = j ω μ z H z , y ( H z ) = j ω ε x E x , x ( H z ) = j ω ε y E y .
x [ 1 ε y H Z x ] + y [ 1 ε x H Z y ] = ω 2 μ z H z .
1 ε y 2 H Z x 2 + 1 ε x 2 H Z y 2 = ω 2 μ z H z .
k x 2 ε y r + k y 2 ε x r = k 0 2 μ z r ,
k x 2 μ y r + k y 2 μ x r = k 0 2 ε z r .
H z 1 = H 0 e j k 0 [ ( cos θ ) x + ( sin θ ) y ] + D e j k 0 [ ( cos θ ) x + ( sin θ ) y ] ( x 0 ) ,
H z 2 = A e j [ k 2 x x + k 0 ( sin θ ) y ] + B e j [ k 2 x x + k 0 ( sin θ ) y ] ( 0 x d ) ,
H z 3 = C e j k 0 [ ( cos θ ) x + ( sin θ ) y ] ( x 0 ) ,
{ H 0 + D = A + B H 0 D = 1 M ( A B ) A ¯ + B ¯ = C ¯ A ¯ B ¯ = M C ¯ } ,
r = D H 0 = j ( M 1 M ) sin ( k 2 x d ) 2 cos ( k 2 x d ) + j ( M + 1 M ) sin ( k 2 x d ) ,
t = C ¯ H 0 = 2 2 cos ( k 2 x d ) + j ( M + 1 M ) sin ( k 2 x d ) .
ε x r ε y r = 1 ; μ z r = 1 ε x r = ε y r ,
ε ¯ r = Λ ( K , 1 K ) ; μ z r = 1 K ,
μ ¯ r = Λ ( K , 1 K ) ; ε z r = 1 K .
t = 2 2 cos ( k 2 x d ) + j ( M + 1 M ) sin ( k 2 x d ) = e j k 2 x d ,
ε ¯ i r = Λ ( K i , 1 K i ) , μ i r = 1 K i ( K i R + ; i = 1 , 2 , , N ) .
δ φ = i = 1 N k i x d i = i = 1 N k 0 cos θ d i K i = k 0 cos θ i = 1 N d i K i .
δ φ = i = 1 N k 0 x d i = k 0 cos θ i = 1 N d i .
i = 1 N d i K i = i = 1 N d i .
ε ¯ r = μ ¯ r = Λ ( f , 1 f , 1 f ) ,
i d i K i = i d i ,
ε ¯ i r = μ ¯ i r = Λ ( K i , 1 K i , 1 K i ) .
δ φ = i k 0 cos θ Δ x i = k 0 cos θ ( b a ) .

Metrics