Abstract

Knowledge of the behavior of stochastic optical fields can aid the understanding of the scintillation of light propagating through a turbulent medium. For this purpose, we perform a numerical investigation of the evolution of the scintillation index and the optical vortex density in a speckle field after removing its continuous phase. We find that both the scintillation index and the vortex density initially drop and then increase again to reach an equilibrium level. It is also found that the initial rate of decrease in both cases is 1 order of magnitude faster than the eventual rate of increase. Their detail shapes are however different. Therefore different empirical functions are used to fit the shapes of these curves.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription