Abstract

Considering that no single algorithm available is universal in color constancy, we propose an effective combination approach using a texture-based matching strategy and a local regression with prior-knowledge regularization. To represent the images, we construct a texture pyramid using an integrated Weibull distribution. Then we define an image similarity measure to search for the K most similar images of the test image. To combine the single algorithms, we integrate prior knowledge into a regularized local regression in a decorrelated color space. Regression weights are obtained on these similar images, and the regularization is implemented by the frequency ratio of the best single algorithm. Experiments on two real world datasets show our approach outperforms the state-of-the-art single algorithms and popular combination approaches with a performance increase of at least 29% compared to the best-performing single algorithm w.r.t median angular error.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription