A. Fallahi, M. Mishrikey, C. Hafner, and R. Vahldieck, “Analysis of multilayer frequency selective surfaces on periodic and anisotropic substrates,” Metamaterials 3, 63-74 (2009).

[CrossRef]

A. Fallahi, K. Z. Aghaie, A. Enayati, and M. Shahabadi, “Diffraction analysis of periodic structures using a transmission-line formulation: principles and applications,” J. Comput. Theor. Nanosci. 4, 649-666 (2007).

B. Momeni, A. A. Eftekhar, and A. Adibi, “Effective impedance model for analysis of reflection at the interfaces of photonic crystals,” Opt. Lett. 32, 778-780 (2007).

[CrossRef]
[PubMed]

B. Momeni, M. Badieirostami, and A. Adibi, “Accurate and efficient techniques for the analysis of reflection at the interfaces of three-dimensional photonic crystals,” J. Opt. Soc. Am. B 24, 2957-2963 (2007).

[CrossRef]

W. Jiang, R. T. Chen, and X. Lu, “Theory of light refraction at the surface of a PC,” Phys. Rev. B 71, 245115 (2005).

[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with PC waveguides,” Nature 438, 65-69 (2005).

[CrossRef]
[PubMed]

Y.-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite PC,” Phys. Rev. E 70, 016706 (2004).

[CrossRef]

Z.-Y. Li and K.-M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003).

[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604-605 (2003).

[CrossRef]
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).

[CrossRef]
[PubMed]

K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549-1551 (2002).

[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of PC microcavities for cavity qed,” Phys. Rev. B 65, 016608 (2001).

[CrossRef]

L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001).

[CrossRef]

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech. 47, 1509-1514 (1999).

[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).

[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

P. Dansas and N. Paraire, “Fast modeling of photonic bandgap structures by use of a diffraction-grating approach,” J. Opt. Soc. Am. A 15, 1586-1598 (1998).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dieletric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).

[CrossRef]
[PubMed]

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. A 18, 211-216 (1979).

B. Momeni, M. Badieirostami, and A. Adibi, “Accurate and efficient techniques for the analysis of reflection at the interfaces of three-dimensional photonic crystals,” J. Opt. Soc. Am. B 24, 2957-2963 (2007).

[CrossRef]

B. Momeni, A. A. Eftekhar, and A. Adibi, “Effective impedance model for analysis of reflection at the interfaces of photonic crystals,” Opt. Lett. 32, 778-780 (2007).

[CrossRef]
[PubMed]

A. Fallahi, K. Z. Aghaie, A. Enayati, and M. Shahabadi, “Diffraction analysis of periodic structures using a transmission-line formulation: principles and applications,” J. Comput. Theor. Nanosci. 4, 649-666 (2007).

L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001).

[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604-605 (2003).

[CrossRef]
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).

[CrossRef]
[PubMed]

D. D. Karkashadze, F. G. Bogdanov, R. S. Zaridze, A. Y. Bijamov, C. Hafner, and D. Erni, “Simulation of Finite Photonic Crystals Made of Biisotropic or Chiral Material,” in Advances in Electromagnetics of Complex Media and Metamaterials NATO Science Series. II. Mathematics, Physics and Chemistry (2003), Vol. 89, pp. 175-193.

D. D. Karkashadze, F. G. Bogdanov, R. S. Zaridze, A. Y. Bijamov, C. Hafner, and D. Erni, “Simulation of Finite Photonic Crystals Made of Biisotropic or Chiral Material,” in Advances in Electromagnetics of Complex Media and Metamaterials NATO Science Series. II. Mathematics, Physics and Chemistry (2003), Vol. 89, pp. 175-193.

L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001).

[CrossRef]

C. Caloz and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications (Wiley, 2006).

W. Jiang, R. T. Chen, and X. Lu, “Theory of light refraction at the surface of a PC,” Phys. Rev. B 71, 245115 (2005).

[CrossRef]

K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549-1551 (2002).

[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604-605 (2003).

[CrossRef]
[PubMed]

L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).

[CrossRef]
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).

[CrossRef]
[PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).

[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

A. Fallahi, K. Z. Aghaie, A. Enayati, and M. Shahabadi, “Diffraction analysis of periodic structures using a transmission-line formulation: principles and applications,” J. Comput. Theor. Nanosci. 4, 649-666 (2007).

N. Engheta and R. W. Ziolkowski, Metamaterials Physics and Engineering Explorations (Wiley2006).

D. D. Karkashadze, F. G. Bogdanov, R. S. Zaridze, A. Y. Bijamov, C. Hafner, and D. Erni, “Simulation of Finite Photonic Crystals Made of Biisotropic or Chiral Material,” in Advances in Electromagnetics of Complex Media and Metamaterials NATO Science Series. II. Mathematics, Physics and Chemistry (2003), Vol. 89, pp. 175-193.

A. Fallahi, M. Mishrikey, C. Hafner, and R. Vahldieck, “Analysis of multilayer frequency selective surfaces on periodic and anisotropic substrates,” Metamaterials 3, 63-74 (2009).

[CrossRef]

A. Fallahi, K. Z. Aghaie, A. Enayati, and M. Shahabadi, “Diffraction analysis of periodic structures using a transmission-line formulation: principles and applications,” J. Comput. Theor. Nanosci. 4, 649-666 (2007).

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).

[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604-605 (2003).

[CrossRef]
[PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).

[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).

[CrossRef]

A. Fallahi, M. Mishrikey, C. Hafner, and R. Vahldieck, “Analysis of multilayer frequency selective surfaces on periodic and anisotropic substrates,” Metamaterials 3, 63-74 (2009).

[CrossRef]

C. Hafner, “Mmp computation of periodic structures,” J. Opt. Soc. Am. A 12, 1057-1067 (1995).

[CrossRef]

D. D. Karkashadze, F. G. Bogdanov, R. S. Zaridze, A. Y. Bijamov, C. Hafner, and D. Erni, “Simulation of Finite Photonic Crystals Made of Biisotropic or Chiral Material,” in Advances in Electromagnetics of Complex Media and Metamaterials NATO Science Series. II. Mathematics, Physics and Chemistry (2003), Vol. 89, pp. 175-193.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with PC waveguides,” Nature 438, 65-69 (2005).

[CrossRef]
[PubMed]

Z.-Y. Li and K.-M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003).

[CrossRef]

K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549-1551 (2002).

[CrossRef]

Y.-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite PC,” Phys. Rev. E 70, 016706 (2004).

[CrossRef]

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech. 47, 1509-1514 (1999).

[CrossRef]

C. Caloz and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications (Wiley, 2006).

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. A 18, 211-216 (1979).

W. Jiang, R. T. Chen, and X. Lu, “Theory of light refraction at the surface of a PC,” Phys. Rev. B 71, 245115 (2005).

[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).

[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

S. John, “Strong localization of photons in certain disordered dieletric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).

[CrossRef]
[PubMed]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).

[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

D. D. Karkashadze, F. G. Bogdanov, R. S. Zaridze, A. Y. Bijamov, C. Hafner, and D. Erni, “Simulation of Finite Photonic Crystals Made of Biisotropic or Chiral Material,” in Advances in Electromagnetics of Complex Media and Metamaterials NATO Science Series. II. Mathematics, Physics and Chemistry (2003), Vol. 89, pp. 175-193.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).

[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024-1035 (1996).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996).

[CrossRef]

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581-2591 (1993).

[CrossRef]

Z.-Y. Li and K.-M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003).

[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of PC microcavities for cavity qed,” Phys. Rev. B 65, 016608 (2001).

[CrossRef]

W. Jiang, R. T. Chen, and X. Lu, “Theory of light refraction at the surface of a PC,” Phys. Rev. B 71, 245115 (2005).

[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

[CrossRef]

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech. 47, 1509-1514 (1999).

[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of PC microcavities for cavity qed,” Phys. Rev. B 65, 016608 (2001).

[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with PC waveguides,” Nature 438, 65-69 (2005).

[CrossRef]
[PubMed]

L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001).

[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. A 18, 211-216 (1979).

A. Fallahi, M. Mishrikey, C. Hafner, and R. Vahldieck, “Analysis of multilayer frequency selective surfaces on periodic and anisotropic substrates,” Metamaterials 3, 63-74 (2009).

[CrossRef]

B. Momeni, M. Badieirostami, and A. Adibi, “Accurate and efficient techniques for the analysis of reflection at the interfaces of three-dimensional photonic crystals,” J. Opt. Soc. Am. B 24, 2957-2963 (2007).

[CrossRef]

B. Momeni, A. A. Eftekhar, and A. Adibi, “Effective impedance model for analysis of reflection at the interfaces of photonic crystals,” Opt. Lett. 32, 778-780 (2007).

[CrossRef]
[PubMed]

B. A. Munk, Frequency Selective Surfaces Theory and Design (Wiley, 2000).

[CrossRef]

L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001).

[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with PC waveguides,” Nature 438, 65-69 (2005).

[CrossRef]
[PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604-605 (2003).

[CrossRef]
[PubMed]

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. A 18, 211-216 (1979).

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

[CrossRef]

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech. 47, 1509-1514 (1999).

[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of PC microcavities for cavity qed,” Phys. Rev. B 65, 016608 (2001).

[CrossRef]

A. Fallahi, K. Z. Aghaie, A. Enayati, and M. Shahabadi, “Diffraction analysis of periodic structures using a transmission-line formulation: principles and applications,” J. Comput. Theor. Nanosci. 4, 649-666 (2007).

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604-605 (2003).

[CrossRef]
[PubMed]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).

[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

A. Fallahi, M. Mishrikey, C. Hafner, and R. Vahldieck, “Analysis of multilayer frequency selective surfaces on periodic and anisotropic substrates,” Metamaterials 3, 63-74 (2009).

[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).

[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with PC waveguides,” Nature 438, 65-69 (2005).

[CrossRef]
[PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of PC microcavities for cavity qed,” Phys. Rev. B 65, 016608 (2001).

[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).

[CrossRef]
[PubMed]

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech. 47, 1509-1514 (1999).

[CrossRef]

Y.-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite PC,” Phys. Rev. E 70, 016706 (2004).

[CrossRef]

D. D. Karkashadze, F. G. Bogdanov, R. S. Zaridze, A. Y. Bijamov, C. Hafner, and D. Erni, “Simulation of Finite Photonic Crystals Made of Biisotropic or Chiral Material,” in Advances in Electromagnetics of Complex Media and Metamaterials NATO Science Series. II. Mathematics, Physics and Chemistry (2003), Vol. 89, pp. 175-193.

N. Engheta and R. W. Ziolkowski, Metamaterials Physics and Engineering Explorations (Wiley2006).

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. A 18, 211-216 (1979).

K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549-1551 (2002).

[CrossRef]

F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech. 47, 1509-1514 (1999).

[CrossRef]

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002).

[CrossRef]

A. Fallahi, K. Z. Aghaie, A. Enayati, and M. Shahabadi, “Diffraction analysis of periodic structures using a transmission-line formulation: principles and applications,” J. Comput. Theor. Nanosci. 4, 649-666 (2007).

F. Montiel and M. Nevière, “Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the r-matrix propagation algorithm,” J. Opt. Soc. Am. A 11, 3241-3250 (1994).

[CrossRef]

P. Dansas and N. Paraire, “Fast modeling of photonic bandgap structures by use of a diffraction-grating approach,” J. Opt. Soc. Am. A 15, 1586-1598 (1998).

[CrossRef]

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581-2591 (1993).

[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024-1035 (1996).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996).

[CrossRef]

C. Hafner, “Mmp computation of periodic structures,” J. Opt. Soc. Am. A 12, 1057-1067 (1995).

[CrossRef]

E. Popov and M. Nevière, “Grating theory: new equations in fourier space leading to fast converging results for tm polarization,” J. Opt. Soc. Am. A 17, 1773-1784 (2000).

[CrossRef]

A. Fallahi, M. Mishrikey, C. Hafner, and R. Vahldieck, “Analysis of multilayer frequency selective surfaces on periodic and anisotropic substrates,” Metamaterials 3, 63-74 (2009).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).

[CrossRef]
[PubMed]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with PC waveguides,” Nature 438, 65-69 (2005).

[CrossRef]
[PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604-605 (2003).

[CrossRef]
[PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782 (1998).

[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002).

[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).

[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of PC microcavities for cavity qed,” Phys. Rev. B 65, 016608 (2001).

[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096-R10099 (1998).

[CrossRef]

Z.-Y. Li and K.-M. Ho, “Light propagation in semi-infinite photonic crystals and related waveguide structures,” Phys. Rev. B 68, 155101 (2003).

[CrossRef]

W. Jiang, R. T. Chen, and X. Lu, “Theory of light refraction at the surface of a PC,” Phys. Rev. B 71, 245115 (2005).

[CrossRef]

L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A. Asatryan, “Photonic band structure calculations using scattering matrices,” Phys. Rev. E 64, 046603 (2001).

[CrossRef]

Y.-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite PC,” Phys. Rev. E 70, 016706 (2004).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dieletric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).

[CrossRef]
[PubMed]

C. Caloz and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications (Wiley, 2006).

N. Engheta and R. W. Ziolkowski, Metamaterials Physics and Engineering Explorations (Wiley2006).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds., Photonic Crystals Advances in Design Fabrication and Characterization (Wiley-VCH, 2004).

[CrossRef]

T.K.Wu, ed., Frequency Selective Surface and Grid Array (Wiley, 1995).

B. A. Munk, Frequency Selective Surfaces Theory and Design (Wiley, 2000).

[CrossRef]

K.Yasumoto, ed., Electromagnetic Theory and Applications for Photonic Crystals (Taylor & Francis, Fukuoka, Japan, 2006).

D. D. Karkashadze, F. G. Bogdanov, R. S. Zaridze, A. Y. Bijamov, C. Hafner, and D. Erni, “Simulation of Finite Photonic Crystals Made of Biisotropic or Chiral Material,” in Advances in Electromagnetics of Complex Media and Metamaterials NATO Science Series. II. Mathematics, Physics and Chemistry (2003), Vol. 89, pp. 175-193.