Abstract

A new boundary condition is introduced to calculate the effective impedance matrix of semi-infinite periodic structures such as photonic crystals and metamaterials, which leads to a reduction of the solution space. The obtained effective impedance matrix allows one to relate a matrix to a PC, which includes all of its properties in terms of reflection from its interface. For one-dimensional photonic crystals or multilayer films, it is shown that a closed-form equation can be found for the effective impedance. For two-dimensional photonic crystals the impedance is obtained using the scattering matrices by solving a unilateral quadratic matrix equation. Several examples are outlined to validate the developed scheme. In the examples, the goal is mainly the computation of the reflection from a semi-infinite periodic structure when a plane wave illuminates its boundary.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription