Abstract

The diffraction computation of crossed gratings is very slow compared with that of line-space gratings of the same size when using a modal method such as rigorous coupled wave analysis (RCWA) or the Chandezon coordinate transformation method. It is well known that the main bottleneck in terms of computation speed is the solution of an eigenproblem for each RCWA slice or interface in the case of the C-method. Even if the crossed grating contains layers that are periodic only in one direction, usually the full 2D problem has to be solved for this layer in order to connect it to the full system solution. In this paper, a computation schema is presented that takes advantage of the 1D periodicity of layers inside a 2D multilayer grating. This results in a considerable acceleration of the formulation and solution of the eigenproblem for these layers. With this new computation schema the total time required for 1D layers in a 2D layer stack can be greatly reduced.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription