Abstract

In digital holographic microscopy, if an optical setup is well aligned, the phase curvature introduced by the microscope objective (MO) together with the illuminating wave to the object wave is a spherical phase curvature. It can be physically compensated by introducing the same spherical phase curvature in the reference beam. Digital holographic microscopy setups based on the Michelson interferometric configuration with MO and an adjustable lens are presented, which can well perform the quasi-physical phase compensation during the hologram recording. In the reflection mode, the adjustable lens serves as both the condensing lens and the compensation lens. When the spatial frequency spectra of the hologram become a point spectrum, one can see that the phase curvature introduced by imaging is quasi-physically compensated. A simple plane numerical reference wavefront used for the reconstruction can give the correct quantitative phase map of the test object. A theoretical analysis and experimental demonstration are given. The simplicity of the presented setup makes it easy to align it well at lower cost.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973-4978 (1992).
    [CrossRef] [PubMed]
  2. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  3. F. Dubois, L. Joannes, and J. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  4. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).
    [CrossRef] [PubMed]
  5. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
    [CrossRef] [PubMed]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
    [CrossRef] [PubMed]
  7. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2006).
    [CrossRef]
  8. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  9. P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003).
    [CrossRef] [PubMed]
  10. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
    [CrossRef] [PubMed]
  11. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
    [CrossRef]
  12. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006).
    [CrossRef]
  13. Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
    [CrossRef]
  14. D.Malacara, ed. Optical Shop Testing, 3rd ed. (Wiley, 2007).
    [CrossRef]
  15. T. Colomb, P. Marquet, F. Charrière, J. Kühn, P. Jourdain, B. Rappaz, P. Magistretti, and C. Depeursinge, “Enhancing the performance of digital holographic microscopy,” in SPIE Newsroom 10.1117/2.1200709.0872 (2007).
    [CrossRef]
  16. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
    [CrossRef]

2006 (6)

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
[CrossRef]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
[CrossRef] [PubMed]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
[CrossRef]

2005 (2)

2003 (1)

2002 (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

2000 (1)

1999 (2)

1992 (1)

Aspert, N.

Bourquin, S.

Boyer, K.

Charrière, F.

Colomb, T.

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
[CrossRef] [PubMed]

T. Colomb, P. Marquet, F. Charrière, J. Kühn, P. Jourdain, B. Rappaz, P. Magistretti, and C. Depeursinge, “Enhancing the performance of digital holographic microscopy,” in SPIE Newsroom 10.1117/2.1200709.0872 (2007).
[CrossRef]

Coppola, G.

Cuche, E.

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2006).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
[CrossRef]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

Cullen, D.

De'an, L.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
[CrossRef]

Depeursinge, C.

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
[CrossRef] [PubMed]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
[CrossRef]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

T. Colomb, P. Marquet, F. Charrière, J. Kühn, P. Jourdain, B. Rappaz, P. Magistretti, and C. Depeursinge, “Enhancing the performance of digital holographic microscopy,” in SPIE Newsroom 10.1117/2.1200709.0872 (2007).
[CrossRef]

Dubois, F.

Emery, Y.

Ferraro, P.

Finizio, A.

Grilli, S.

Haddad, W. S.

Joannes, L.

Jourdain, P.

T. Colomb, P. Marquet, F. Charrière, J. Kühn, P. Jourdain, B. Rappaz, P. Magistretti, and C. Depeursinge, “Enhancing the performance of digital holographic microscopy,” in SPIE Newsroom 10.1117/2.1200709.0872 (2007).
[CrossRef]

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Kim, M.

Kühn, J.

Legros, J.

Liren, L.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
[CrossRef]

Lo, C.-M.

Longworth, J. W.

Magistretti, P.

T. Colomb, P. Marquet, F. Charrière, J. Kühn, P. Jourdain, B. Rappaz, P. Magistretti, and C. Depeursinge, “Enhancing the performance of digital holographic microscopy,” in SPIE Newsroom 10.1117/2.1200709.0872 (2007).
[CrossRef]

Magistretti, P. J.

Magro, C.

Mann, C.

Marian, A.

Marquet, P.

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
[CrossRef]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
[CrossRef] [PubMed]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006).
[CrossRef]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

T. Colomb, P. Marquet, F. Charrière, J. Kühn, P. Jourdain, B. Rappaz, P. Magistretti, and C. Depeursinge, “Enhancing the performance of digital holographic microscopy,” in SPIE Newsroom 10.1117/2.1200709.0872 (2007).
[CrossRef]

McPherson, A.

Montfort, F.

Nicola, S. D.

Pierattini, G.

Rappaz, B.

Rhodes, C. K.

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Solem, J. C.

Weijuan, Q.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
[CrossRef]

Ya'nan, Z.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
[CrossRef]

Yu, L.

Yu, Z.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
[CrossRef]

Zhu, L.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912-1-3 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (2)

D.Malacara, ed. Optical Shop Testing, 3rd ed. (Wiley, 2007).
[CrossRef]

T. Colomb, P. Marquet, F. Charrière, J. Kühn, P. Jourdain, B. Rappaz, P. Magistretti, and C. Depeursinge, “Enhancing the performance of digital holographic microscopy,” in SPIE Newsroom 10.1117/2.1200709.0872 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the location of the two point sources.

Fig. 2
Fig. 2

Spectrum analysis of holograms with different fringe patterns. (a) Hologram with straight fringe pattern. (b) Fourier spectra of hologram (a). (c) Hologram with circular fringe pattern. (d) Fourier spectra of hologram (c).

Fig. 3
Fig. 3

Schematic of the reflection-mode DHM setup.

Fig. 4
Fig. 4

Schematic of transmission-mode DHM setup.

Fig. 5
Fig. 5

Fourier spectra in the frequency domain. (a) When h o > h r , Fourier spectra of the recording hologram. (b) Spectrum of the plus order with rectangular shape. (c) Fourier spectra of the recording hologram when h o = h r . (d) Spectrum of the plus order with point shape. (e) Fourier spectra of the recording hologram when h o < h r . (f) Spectrum of the plus order with rectangular shape.

Fig. 6
Fig. 6

Physical phase compensation demonstration. (a) when h o > h r , a diverging spherical phase remains. (b) Unwrapped 3D phase map of (a). (c) when h o = h r , the spherical phase is totally compensated. (d) Unwrapped 3D phase map of (c). (e) when h o < h r , a converging spherical phase remains. (f) Unwrapped 3D phase map of (e).

Fig. 7
Fig. 7

Fourier spectra of holograms when the numerical spherical reference wave is used to illuminate the holograms. (a) Fourier spectra of the hologram in Fig. 2a. (b) Fourier spectra of the hologram in Fig. 2c.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I H ( x , y ) = | O + R | 2 = | O | 2 + | R | 2 + R O * + R * O ,
ψ ( x , y ) = C ( | O | 2 + | R | 2 ) + C R O * + C R * O .
ψ I ( n Δ x i , m Δ y i ) = exp ( j k d ) j λ d FFT 1 { FFT { ψ H ( n Δ x H , m Δ y H ) } G ( n Δ ξ , m Δ η ) } ,
G ( n Δ ξ , m Δ η ) = exp [ j 2 π d λ 1 ( λ n Δ ξ ) 2 ( λ m Δ η ) 2 ] ,
R ( x , y ) = exp { j π λ h r [ ( x S R x ) 2 + ( y S R y ) 2 ] } .
O ( x , y ) = A O exp { j π λ h o [ ( x S O x ) 2 + ( y S O y ) 2 ] } exp [ j φ ( x , y ) ] ,
I H ( x , y ) = | O | 2 + | R | 2 + R O * + R * O = 1 + | A O | 2 + A O exp [ j π λ ( S R x 2 h r S O x 2 h o + S R y 2 h r S O y 2 h o ) ] exp [ j π λ ( 1 h r 1 h o ) ( x 2 + y 2 ) + j 2 π λ ( S R x h r S O x h o ) x + j 2 π λ ( S R y h r S o y h o ) y ] exp [ j φ ( x , y ) ] + A O exp [ j π λ ( S R x 2 h r S O x 2 h o + S R y 2 h r S O y 2 h o ) ] × exp [ j π λ ( 1 h r 1 h o ) ( x 2 + y 2 ) j 2 π λ h r ( S R x h r S O x h o ) x j 2 π λ h r ( S R y h r S o y h o ) y ] exp [ j φ ( x , y ) ] .
I H ( x , y ) = | O | 2 + | R | 2 + R O * + R * O = 1 + | A O | 2 + A O exp [ j π λ ( S R x 2 S O x 2 + S R y 2 S O y 2 h r ) ] exp [ j 2 π λ ( S R x S O x h r ) x + j 2 π λ ( S R y S O y h r ) y ] exp [ j φ ( x , y ) ] + A O exp [ j π λ ( S R x 2 S O x 2 + S R y 2 S O y 2 h r ) ] exp [ j 2 π λ h r ( S R x S O x h r ) y j 2 π λ h r ( S R y S O y h r ) y ] exp [ j φ ( x , y ) ] .
I H F ( f x , f y ) = δ ( f x , f y ) + δ ( f x S R x S O x λ h r , f y S R y S O y λ h r ) FFT { exp [ j φ ( x , y ) ] } + δ ( f x + S R x S O x λ h r , f y + S R y S O y λ h r ) FFT { exp [ j φ ( x , y ) ] } .
I H F ( f x , f y ) = δ ( f x , f y ) + j λ h r h o h o h r exp [ j π λ h r h o h o h r ( f x 2 + f y 2 ) ] δ ( f x S R x S O x λ h r , f y S R y S O y λ h r ) FFT { exp [ j φ ( x , y ) ] } + j λ h r h o h o h r exp [ j π λ h r h o h o h r ( f x 2 + f y 2 ) ] δ ( f x + S R x S O x λ h r , f y + S R y S O y λ h r ) FFT { exp [ j φ ( x , y ) ] } .

Metrics