Abstract

We introduce a novel all-optical logic architecture whereby the gates may be readily reconfigured to reprogram their logic to implement (N)AND/(N)OR/X(N)OR. A single gate structure may be used throughout the logic circuit to implement multiple truth tables. The reconfiguration is effected by an optical reference signal. The reference may also be adapted to an arbitrary Boolean complex alphabet at the gate logic inputs and calibrated to correct gate imperfections. The all-optical gate structure is partitioned into a linear interferometric front end and a nonlinear back end. In the linear section, two optical logic inputs, along with a reference signal, linearly interfere. The nonlinear back end realizes a phase-erasure (or phase-reset) function. The reconfiguration and recalibration capabilities, along with the functional decoupling between the linear and nonlinear sections of each gate, facilitate the potential aggregation of large gate counts into logic arrays. A fundamental lower bound for the expended energy per gate is derived as 3hν+kTln2  Joules per bit.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002).
    [CrossRef]
  2. M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
    [CrossRef]
  3. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
    [CrossRef]
  4. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323-1325 (1993).
    [CrossRef]
  5. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003).
    [CrossRef] [PubMed]
  6. S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” Proc. SPIE 5511, 10-17 (2004).
    [CrossRef]
  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  8. O. Limon, A. Rudnitsky, Z. Zalevsky, M. Nathan, L. Businaro, D. Cojoc, and A. Gerardino, “All-optical nano modulator on a silicon chip,” Opt. Express 15, 9029-9039 (2007).
    [CrossRef] [PubMed]
  9. L. Brzozowski and E. H. Sargent, “All-optical analog-to digital converters, hardlimiters and logic gates,” J. Lightwave Technol. 19, 114-119 (2001).
    [CrossRef]
  10. J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3.
    [CrossRef]
  11. Shacham, K. Bergman, and L. P. Carloni, “On the design of a photonic network-on-chip,” in Proceedings of the First International Symposium on Networks-on-Chip, 2007 (NOCS 2007) (IEEE, 2007), pp. 53-64.
    [CrossRef]
  12. K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron. 14, 938-945 (2008).
    [CrossRef]
  13. R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183-191 (1961).
    [CrossRef]
  14. D. Winkel and F. Proser, The Art of Digital Design (Prentice-Hall, 1980).
  15. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008).
    [CrossRef]
  16. A. Gupta, K. Tsutsumi, and J. Nakayama, “Synthesis of Hadamard transformers by use of multimode interference optical waveguides,” Appl. Opt. 42, 2730-2738 (2003).
    [CrossRef] [PubMed]
  17. Z. Zalevsky, A. Rudnitsky, and M. Nathan, “Nano photonic and ultra fast all-optical processing modules,” Opt. Express 13, 10272-10284 (2005).
    [CrossRef] [PubMed]
  18. I. T. Monroy, F. Öhman, K. Yvind, L. J. Christiansen, J. Mørk, C. Peucheret, and P. Jeppesen, “Monolithically integrated reflective SOA-EA carrier remodulator for broadband access nodes,” Opt. Express 14, 8060-8064 (2006).
    [CrossRef]
  19. M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
    [CrossRef]
  20. F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245-255 (2004).
    [CrossRef]
  21. H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing technique for 160-Gb/s optical signal transmission,” IEEE J. Sel. Top. Quantum Electron. 13, 70-78 (2007).
    [CrossRef]
  22. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, and H. J. S. Dorren, “All-optical demultiplexing of 640to40 Gbit/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32, 835-837 (2007).
    [CrossRef] [PubMed]
  23. A. Sharaiha, H. W. Li, F. Marchese, and J. Le Bihan, “All-optical logic NOR gate using a semiconductor laser amplifier,” Electron. Lett. 33, 323-325 (1997).
    [CrossRef]
  24. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).
  25. H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
    [CrossRef]
  26. S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
    [CrossRef]
  27. A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
    [CrossRef]
  28. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
    [CrossRef]
  29. R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79-81 (2003).
    [CrossRef]
  30. K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photonics Technol. Lett. 16, 897-899 (2004).
    [CrossRef]
  31. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18, 1341-1343 (2006).
    [CrossRef]
  32. H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
    [CrossRef]
  33. H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243-247 (2003).
    [CrossRef]
  34. D. J. Moss and B. J. Eggleton, “Towards photonic integrated circuit all-optical signal processing based on Kerr nonlinearities,” in Advances in Information Optics and Photonics, Vol. VI, A.T.Friberg and R.Dändliker, eds. (SPIE Press, 2008).
    [CrossRef]
  35. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.
  36. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
    [CrossRef]
  37. T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13, 5542-5552 (2005).
    [CrossRef] [PubMed]
  38. T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
    [CrossRef]
  39. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003).
    [CrossRef]
  40. M. Rochette, J. L. Blows, and B. J. Eggleton, “3R optical regeneration: An all-optical solution with BER improvement,” Opt. Express 14, 6414-6427 (2006).
    [CrossRef] [PubMed]
  41. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. 25, 58-66 (2007).
    [CrossRef]
  42. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
    [CrossRef]
  43. J. H. Lee and K. Kikuchi, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Opt. Express 13, 6864-6869 (2005).
    [CrossRef] [PubMed]
  44. A. Siegman, Lasers (University Science Books, 1986).
  45. K. Hinton, P. M. Farrell, and R. S. Tucker, “The photonic bottleneck,” in Optical Fiber Communication Conference (OFC) 2007, OSA Technical Digest (CD) (OSA, 2007), paper OThl1.
    [CrossRef]

2008 (2)

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron. 14, 938-945 (2008).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008).
[CrossRef]

2007 (4)

2006 (7)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

M. Rochette, J. L. Blows, and B. J. Eggleton, “3R optical regeneration: An all-optical solution with BER improvement,” Opt. Express 14, 6414-6427 (2006).
[CrossRef] [PubMed]

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

I. T. Monroy, F. Öhman, K. Yvind, L. J. Christiansen, J. Mørk, C. Peucheret, and P. Jeppesen, “Monolithically integrated reflective SOA-EA carrier remodulator for broadband access nodes,” Opt. Express 14, 8060-8064 (2006).
[CrossRef]

M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

2005 (5)

Z. Zalevsky, A. Rudnitsky, and M. Nathan, “Nano photonic and ultra fast all-optical processing modules,” Opt. Express 13, 10272-10284 (2005).
[CrossRef] [PubMed]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13, 5542-5552 (2005).
[CrossRef] [PubMed]

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

J. H. Lee and K. Kikuchi, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Opt. Express 13, 6864-6869 (2005).
[CrossRef] [PubMed]

2004 (5)

H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
[CrossRef]

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photonics Technol. Lett. 16, 897-899 (2004).
[CrossRef]

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245-255 (2004).
[CrossRef]

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

2003 (5)

M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506-2508 (2003).
[CrossRef] [PubMed]

A. Gupta, K. Tsutsumi, and J. Nakayama, “Synthesis of Hadamard transformers by use of multimode interference optical waveguides,” Appl. Opt. 42, 2730-2738 (2003).
[CrossRef] [PubMed]

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243-247 (2003).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79-81 (2003).
[CrossRef]

2002 (5)

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).

H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
[CrossRef]

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

2001 (1)

2000 (1)

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

1997 (1)

A. Sharaiha, H. W. Li, F. Marchese, and J. Le Bihan, “All-optical logic NOR gate using a semiconductor laser amplifier,” Electron. Lett. 33, 323-325 (1997).
[CrossRef]

1993 (1)

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323-1325 (1993).
[CrossRef]

1961 (1)

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183-191 (1961).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Adler, M.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

Alic, N.

Almeida, V. R.

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Assanto, G.

M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323-1325 (1993).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bergman, K.

Shacham, K. Bergman, and L. P. Carloni, “On the design of a photonic network-on-chip,” in Proceedings of the First International Symposium on Networks-on-Chip, 2007 (NOCS 2007) (IEEE, 2007), pp. 53-64.
[CrossRef]

Bischoff, S.

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245-255 (2004).
[CrossRef]

Blows, J. L.

Brzozowski, L.

Businaro, L.

Byun, Y. T.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).

Carloni, L. P.

Shacham, K. Bergman, and L. P. Carloni, “On the design of a photonic network-on-chip,” in Proceedings of the First International Symposium on Networks-on-Chip, 2007 (NOCS 2007) (IEEE, 2007), pp. 53-64.
[CrossRef]

Castro, M.

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243-247 (2003).
[CrossRef]

Centanni, J. C.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Chan, C.-K.

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photonics Technol. Lett. 16, 897-899 (2004).
[CrossRef]

Chan, K.

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photonics Technol. Lett. 16, 897-899 (2004).
[CrossRef]

Chen, L. K.

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photonics Technol. Lett. 16, 897-899 (2004).
[CrossRef]

Chraplyvy, A. R.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Christen, L.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.

Christiansen, L. J.

Cojoc, D.

Conti, C.

M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

Coquelin, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008).
[CrossRef]

Dagens, B.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

de Waardt, H.

Díaz, C. A.

H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
[CrossRef]

Dong, H.

H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
[CrossRef]

Dorren, H. J. S.

Dutta, N. K.

H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
[CrossRef]

Eggleton, B. J.

Eisenstein, G.

M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

Erasme, D.

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243-247 (2003).
[CrossRef]

H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
[CrossRef]

Fainman, Y.

Fan, S.

Farrell, P. M.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron. 14, 938-945 (2008).
[CrossRef]

K. Hinton, P. M. Farrell, and R. S. Tucker, “The photonic bottleneck,” in Optical Fiber Communication Conference (OFC) 2007, OSA Technical Digest (CD) (OSA, 2007), paper OThl1.
[CrossRef]

Fjelde, T.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

Forchel, A.

M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

Ford, J. E.

Fujii, K.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing technique for 160-Gb/s optical signal transmission,” IEEE J. Sel. Top. Quantum Electron. 13, 70-78 (2007).
[CrossRef]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

Gaborit, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

Gerardino, A.

Geshiro, M.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Guekos, G.

H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
[CrossRef]

Guillemot, I.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

Guo, H.

J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3.
[CrossRef]

Gupta, A.

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Hinton, K.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron. 14, 938-945 (2008).
[CrossRef]

K. Hinton, P. M. Farrell, and R. S. Tucker, “The photonic bottleneck,” in Optical Fiber Communication Conference (OFC) 2007, OSA Technical Digest (CD) (OSA, 2007), paper OThl1.
[CrossRef]

Ho, P.-T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

Jaques, J.

H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
[CrossRef]

Jeon, J. M.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Jeppesen, P.

Jhon, Y. M.

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).

Jiang, R.

Joannopoulos, J. D.

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Jopson, R. M.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Kagawa, M.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing technique for 160-Gb/s optical signal transmission,” IEEE J. Sel. Top. Quantum Electron. 13, 70-78 (2007).
[CrossRef]

Khoe, G. D.

Kikuchi, K.

J. H. Lee and K. Kikuchi, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Opt. Express 13, 6864-6869 (2005).
[CrossRef] [PubMed]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Kim, J. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).

Kim, S. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).

Kitamura, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Kloch, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

Koonen, A. M. J.

Landauer, R.

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183-191 (1961).
[CrossRef]

Le Bihan, J.

A. Sharaiha, H. W. Li, F. Marchese, and J. Le Bihan, “All-optical logic NOR gate using a semiconductor laser amplifier,” Electron. Lett. 33, 323-325 (1997).
[CrossRef]

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

J. H. Lee and K. Kikuchi, “All fiber-based 160-Gbit/s add/drop multiplexer incorporating a 1-m-long Bismuth Oxide-based ultra-high nonlinearity fiber,” Opt. Express 13, 6864-6869 (2005).
[CrossRef] [PubMed]

J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3.
[CrossRef]

Lee, S.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).

Li, G.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

Li, H. W.

A. Sharaiha, H. W. Li, F. Marchese, and J. Le Bihan, “All-optical logic NOR gate using a semiconductor laser amplifier,” Electron. Lett. 33, 323-325 (1997).
[CrossRef]

Li, Z.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

Limon, O.

Lipson, M.

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Liu, Y.

Luca, A. D.

M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

Luo, T.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.

Manning, R. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Marchese, F.

A. Sharaiha, H. W. Li, F. Marchese, and J. Le Bihan, “All-optical logic NOR gate using a semiconductor laser amplifier,” Electron. Lett. 33, 323-325 (1997).
[CrossRef]

Maxwell, G. D.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79-81 (2003).
[CrossRef]

McGeehan, J. E.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

McKinstrie, C. J.

R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. 25, 58-66 (2007).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Monroy, I. T.

Morel, P.

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

Mørk, J.

I. T. Monroy, F. Öhman, K. Yvind, L. J. Christiansen, J. Mørk, C. Peucheret, and P. Jeppesen, “Monolithically integrated reflective SOA-EA carrier remodulator for broadband access nodes,” Opt. Express 14, 8060-8064 (2006).
[CrossRef]

M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245-255 (2004).
[CrossRef]

Moss, D. J.

D. J. Moss and B. J. Eggleton, “Towards photonic integrated circuit all-optical signal processing based on Kerr nonlinearities,” in Advances in Information Optics and Photonics, Vol. VI, A.T.Friberg and R.Dändliker, eds. (SPIE Press, 2008).
[CrossRef]

Murai, H.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing technique for 160-Gb/s optical signal transmission,” IEEE J. Sel. Top. Quantum Electron. 13, 70-78 (2007).
[CrossRef]

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Nakayama, J.

Nathan, M.

Nezhad, M.

Ng, T. T.

Nishida, K.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

O'Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Öhman, F.

I. T. Monroy, F. Öhman, K. Yvind, L. J. Christiansen, J. Mørk, C. Peucheret, and P. Jeppesen, “Monolithically integrated reflective SOA-EA carrier remodulator for broadband access nodes,” Opt. Express 14, 8060-8064 (2006).
[CrossRef]

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245-255 (2004).
[CrossRef]

Okamoto, S.

J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3.
[CrossRef]

Otani, T.

J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3.
[CrossRef]

Pan, Z.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Pecciantu, M.

M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

Peucheret, C.

Piccirilli, A. B.

H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
[CrossRef]

Poingt, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008).
[CrossRef]

Poustie, A. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Preble, S. F.

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

Proser, F.

D. Winkel and F. Proser, The Art of Digital Design (Prentice-Hall, 1980).

Radic, S.

R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-wave band translation between the near-infrared and visible spectral ranges,” J. Lightwave Technol. 25, 58-66 (2007).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003).
[CrossRef]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008).
[CrossRef]

Raskutti, G.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron. 14, 938-945 (2008).
[CrossRef]

Reithmaier, J. P.

M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

Renaud, M.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Rochette, M.

Rudnitsky, A.

Saperstein, R. E.

Sargent, E. H.

Sawa, S.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Schares, L.

H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
[CrossRef]

Shacham,

Shacham, K. Bergman, and L. P. Carloni, “On the design of a photonic network-on-chip,” in Proceedings of the First International Symposium on Networks-on-Chip, 2007 (NOCS 2007) (IEEE, 2007), pp. 53-64.
[CrossRef]

Sharaiha, A.

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

A. Sharaiha, H. W. Li, F. Marchese, and J. Le Bihan, “All-optical logic NOR gate using a semiconductor laser amplifier,” Electron. Lett. 33, 323-325 (1997).
[CrossRef]

Sheik-Bahae, M.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323-1325 (1993).
[CrossRef]

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

Siegman, A.

A. Siegman, Lasers (University Science Books, 1986).

Soljacic, M.

Somers, A.

M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

Soto, H.

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243-247 (2003).
[CrossRef]

H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
[CrossRef]

Stegeman, G.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323-1325 (1993).
[CrossRef]

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

Tangdiongga, E.

Tong, F.

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photonics Technol. Lett. 16, 897-899 (2004).
[CrossRef]

Topomondzo, J.

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
[CrossRef]

Topomondzo, J. D.

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243-247 (2003).
[CrossRef]

Tromborg, B.

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245-255 (2004).
[CrossRef]

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

Tsuji, H.

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing technique for 160-Gb/s optical signal transmission,” IEEE J. Sel. Top. Quantum Electron. 13, 70-78 (2007).
[CrossRef]

Tsuritani, T.

J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3.
[CrossRef]

Tsutsumi, K.

Tucker, R. S.

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron. 14, 938-945 (2008).
[CrossRef]

K. Hinton, P. M. Farrell, and R. S. Tucker, “The photonic bottleneck,” in Optical Fiber Communication Conference (OFC) 2007, OSA Technical Digest (CD) (OSA, 2007), paper OThl1.
[CrossRef]

Umeton, U.

M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

Van der Poel, M.

M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

Van Stryland, E.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323-1325 (1993).
[CrossRef]

Wang, Q.

H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
[CrossRef]

Wang, Y.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

Webb, R. P.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79-81 (2003).
[CrossRef]

Willner, A. E.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.

Winkel, D.

D. Winkel and F. Proser, The Art of Digital Design (Prentice-Hall, 1980).

Wolfson, D.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

Woo, D. H.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).

Yabu, T.

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

Yan, L.-S.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.

Yanik, M. F.

Yoshikane, N.

J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3.
[CrossRef]

Yu, B. G.

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

Yu, C.

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008).
[CrossRef]

Yvind, K.

Zalevsky, Z.

Zhu, G.

H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Pecciantu, C. Conti, G. Assanto, A. D. Luca, and U. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[CrossRef]

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, “All optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323-1325 (1993).
[CrossRef]

M. Van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, “Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 μm,” Appl. Phys. Lett. 89, 081102 (2006).
[CrossRef]

Electron. Lett. (5)

A. Sharaiha, H. W. Li, F. Marchese, and J. Le Bihan, “All-optical logic NOR gate using a semiconductor laser amplifier,” Electron. Lett. 33, 323-325 (1997).
[CrossRef]

S. H. Kim, J. H. Kim, B. G. Yu, Y. T. Byun, J. M. Jeon, S. Lee, and D. H. Woo, “All-optical NAND gate using cross gain modulation in semiconductor optical amplifiers,” Electron. Lett. 41, 1027-1028 (2005).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarisation switching within 1 m-long bismuth oxide-based nonlinear fibre,” Electron. Lett. 41, 1074-1075 (2005).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36, 1863-1864 (2000).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79-81 (2003).
[CrossRef]

IBM J. Res. Dev. (1)

R. Landauer, “Irreversibility and heat generation in the computing process,” IBM J. Res. Dev. 5, 183-191 (1961).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, “All-optical logic gates containing a two-mode non-linear waveguide,” IEEE J. Quantum Electron. 38, 37-46 (2002).
[CrossRef]

F. Öhman, S. Bischoff, B. Tromborg, and J. Mørk, “Noise and regeneration in semiconductor waveguides with saturable gain and absorption,” IEEE J. Quantum Electron. 40, 245-255 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Murai, M. Kagawa, H. Tsuji, and K. Fujii, “EA-modulator-based optical time division multiplexing/demultiplexing technique for 160-Gb/s optical signal transmission,” IEEE J. Sel. Top. Quantum Electron. 13, 70-78 (2007).
[CrossRef]

K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE J. Sel. Top. Quantum Electron. 14, 938-945 (2008).
[CrossRef]

IEEE Photonics Technol. Lett. (8)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photonics Technol. Lett. 14, 74-76 (2002).
[CrossRef]

K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photonics Technol. Lett. 16, 897-899 (2004).
[CrossRef]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

H. Soto, C. A. Díaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, “All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier,” IEEE Photonics Technol. Lett. 14, 498-500 (2002).
[CrossRef]

J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photonics Technol. Lett. 2514, 1436-1438 (2002).

T. Luo, C. Yu, Z. Pan, Y. Wang, J. E. McGeehan, M. Adler, and A. E. Willner, “All-optical chromatic dispersion monitoring by measuring the XPM-generated optical tone power in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 18, 430-432 (2006).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15, 957-959 (2003).
[CrossRef]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046-1048 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Commun. (3)

H. Dong, Q. Wang, G. Zhu, J. Jaques, A. B. Piccirilli, and N. K. Dutta, “Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer,” Opt. Commun. 242, 479-485 (2004).
[CrossRef]

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322-325 (2006).
[CrossRef]

H. Soto, J. D. Topomondzo, D. Erasme, and M. Castro, “All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier,” Opt. Commun. 218, 243-247 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

S. F. Preble, V. R. Almeida, and M. Lipson, “Optically controlled photonic crystal nanocavity in silicon,” Proc. SPIE 5511, 10-17 (2004).
[CrossRef]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O'Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 1567-1570 (2008).
[CrossRef]

Other (7)

A. Siegman, Lasers (University Science Books, 1986).

K. Hinton, P. M. Farrell, and R. S. Tucker, “The photonic bottleneck,” in Optical Fiber Communication Conference (OFC) 2007, OSA Technical Digest (CD) (OSA, 2007), paper OThl1.
[CrossRef]

J. H. Lee, T. Tsuritani, H. Guo, S. Okamoto, N. Yoshikane, and T. Otani, “Field trial of GMPLS-controlled all-optical networking assisted with optical performance monitors,” in Optical Fiber Communication Conference (OFC) 2008, OSA Technical Digest (CD) (OSA, 2008), pp. 1-3.
[CrossRef]

Shacham, K. Bergman, and L. P. Carloni, “On the design of a photonic network-on-chip,” in Proceedings of the First International Symposium on Networks-on-Chip, 2007 (NOCS 2007) (IEEE, 2007), pp. 53-64.
[CrossRef]

D. Winkel and F. Proser, The Art of Digital Design (Prentice-Hall, 1980).

D. J. Moss and B. J. Eggleton, “Towards photonic integrated circuit all-optical signal processing based on Kerr nonlinearities,” in Advances in Information Optics and Photonics, Vol. VI, A.T.Friberg and R.Dändliker, eds. (SPIE Press, 2008).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, and A. E. Willner, “All-optical XOR gate based on Kerr effect in single highly-nonlinear fiber,” in Conference on Lasers and Electro-Optics (CLEO) 2004, OSA Technical Digest (CD) (OSA, 2004), Vol. 2, p. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structure and realization of the all-optical reconfigurable logic gate. (a) Abstract mathematical structure of the cascade of a linear combiner and a PE module. (b) One possible photonic realization of the all-optical reconfigurable gate (all-optical FPGA): the linear combiner is implemented as the cascade of a pair of directional couplers performing the sum Σ and difference Δ of their respective inputs. The reference input R defines the gate type (AND, OR, XOR,…). PE is carried out using the appropriate nonlinear element.

Fig. 2
Fig. 2

Simplified reconfigurable logic gate structure. (a) Using a single directional coupler. (b) Using a Y-junction combiner followed by a PESI module that erases the phase and provides a regenerative transfer characteristic with the threshold positioned as described in the text.

Fig. 3
Fig. 3

LC front ends of the reconfigurable all-optical logic gate. (a) Asymmetrical structure using two Y-junction combiners. (b), (c) Symmetrical structure using three Y-junction combiners. In (b) two different reference values are used; in (c) these two reference values are set to a common value R .

Fig. 4
Fig. 4

3D BPM simulation of the three-Y-junction NOR structure. The upper and lower rows indicate the optical intensity and amplitude, respectively, at certain cross sections of the waveguide. From left to right, the inputs X,Y into the device are set to LL, LH, HL,HH, with L = 0 and H = 1 . The background light intensity is 0 and the two references R are set to amplitude 0.75 . The respective NOR gate outputs are H,L,L,L, as seen in the corresponding darker and lighter lines. In the lower row, the H output magnitude is 3 × as high as that of each L output, as measured to very high accuracy. Note that despite the graphic visualization of optical intensity giving a semblance of automatic PE above, a PE module would still be required in a complete gate to allow for logic cascading.

Fig. 5
Fig. 5

3D BPM simulation of the three-Y-junction AND structure. The two references R are set to amplitude 0.25 . When the inputs are LL,LH,HL,HH, the respective outputs are L,L,L,H. The other descriptive remarks from Fig. 4 apply here as well.

Fig. 6
Fig. 6

3D BPM simulation of the three-Y-junction XNOR structure. The two references R are set to amplitude 0.5 . From left to right, the inputs X,Y into the device are set to LL,LH,HL,HH, and the respective outputs are H,L,L,H. In the top row the H outputs appear as darker lines, whereas the L outputs are seen to fade to zero. The other descriptive remarks from Fig. 4 apply here as well.

Fig. 7
Fig. 7

FDTD simulations of the three-Y-junction structures. (a) a NOR gate. (b) an AND gate (c) a XNOR gate, depending on the two equal reference signals R . The monitor graphs indicate the steady-state output optical power versus time, showing the correct gate function in intensity but not in amplitude; a physical phase erasure module would be required in a complete gate. For the NOR and AND gates, the ratio between the H and L output power levels equals 9.

Fig. 8
Fig. 8

Phasor diagram describing the operation of all-optical logic gates. (a) AND gate. (b) NOR gate. (c) XNOR gate. The input and output logic polarities are positive, and the transfer characteristic M(.) is monotonically increasing.

Fig. 9
Fig. 9

Reconfigurable logic gate with calibration and tuning ports.

Fig. 10
Fig. 10

Simplified structure with an ideal PESI at the output. In the case wherein ideal or nearly ideal PESIs are provided at the output, we may do away with the second coupler as previously explained, reducing the system to a less complex design.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

U = a X + b Y + c R ,
U = X + Y R .
[ Σ Δ ] = 1 2 ( 1 1 1 1 ) [ X Y ] = 1 2 H [ X Y ] ,
Σ X + Y ; U = Σ R ,
V = M ( | U | ) e j Φ ( | U | ) .
M ID ( u ) = { V L , u u th V H , u > u th } , M NOT ( u ) = { V L , u u th V H , u < u th } .
U = X + Y R L = { 0 , A } + { 0 , A } 0.5 A = { 0 , A , A , 2 A } 0.5 A = { 0.5 A , 0.5 A , 0.5 A , 1.5 A }
| U | = { 0.5 A , 0.5 A , 0.5 A , 1.5 A } ; | U | = 0.5 A = F out for F F , F T , T F ; | U | = 1.5 A = T out for T T .
U = X + Y R M = { 0 , A } + { 0 , A } A = { 0 , A , A , 2 A } A = { A , 0 , 0 , A }
| U | = { A , 0 , 0 , A } ; | U | = A = T out for F F , T T ; | U | = 0 = F out for F T , T F .
NOR : U = X + Y R H = { ± A } + { ± A } A = { 2 A , 0 , 0 , 2 A } A = { 3 A , A , A , A }
| U | = { 3 A , A , A , A } ; | U | = 3 A = T out for F F ; | U | = A = F out for F T , T F , T T .
AND : U = X + Y R L = { ± A } + { ± A } ( A ) = { 2 A , 0 , 0 , 2 A } + A = { A , A , A , 3 A }
| U | = { A , A , A , 3 A } ; | U | = 3 A = T out for T T ; | U | = A = F out for F T , T F , T T .
XNOR : U = X + Y R M = X + Y = { ± A } + { ± A } = { 2 A , 0 , 0 , 2 A }
| U | = { 2 A , 0 , 0 , 2 A } ; | U | = 2 A = T out for F F , T T ; | U | = 0 = F out for F T , T F .
U = a ( X + Y + γ R ) ,
V = G R ( X , Y ) | X + Y R | , X , Y { E L , E H } ,
g ( I ) 1 I d I d z = g ( 0 ) 1 + I I sat ,
g net ( I TTh ) = g ( I TTh ) α 0 = g 0 1 + I TTh I sat α 0 = 0 .
g net ( I H ) = g ( I H ) α 0 = g 0 1 + I H I sat α 0 < 0 .
g net ( I L ) = g ( I L ) α 0 = g 0 1 + I L I sat α 0 > 0 .
g net ( z ) = g ( z ) α 0 = 1 I p ( z ) d I p ( z ) d z = d d z ln I p ( z ) .
I p ( z + d z ) = I p ( z ) + d I p ( z ) = I p ( z ) + I p ( z ) g net ( z ) d z = I p ( z ) { 1 + [ g ( z ) α 0 ] d z }
I p ( z + d z ) = I p ( z ) { 1 + [ g 0 1 + ( I L + I p ( z ) ) I sat α 0 ] d z } ,
0 = g 0 1 + ( I L + I p ( ) ) I sat α 0 I L + I p ( ) = I sat ( g 0 α 0 1 ) = I TTh ;
I < I TTh I p ( ) = I TTh I L , I > I TTh I p ( ) = 0 .
[ U U U ] = 1 3 ( v 1 u 1 v 1 u 2 v 1 u 3 v 2 u 1 w v 2 u 2 w 2 v 2 u 3 v 3 u 1 w 2 v 3 u 2 w 4 v 3 u 3 ) [ X Y R ] = diag [ v 1 , v 2 , v 3 ] ( 1 1 1 1 w w 2 1 w 2 w 4 ) diag [ u 1 , u 2 , u 3 ] .

Metrics