Abstract

Currently, data recording density in cover-layer-protected near-field-recording (NFR) and multiple-recording layered NFR optical data storage technology is limited by the difficulty in obtaining high-refractive-index cover layer materials. In addition, with the exception of improved resolution, the higher the numerical aperture (NA), the poorer the optical characteristics. However, in this study, we present novel cover-layer-protected solid immersion lens (SIL)-based NFR optics that provide superior optical performance with higher recording density, greatly enhanced focal depth, and less sensitivity to near-field air-gap-distance variation by modulating the amplitude and phase in the entrance pupil using annular pupil zones. Using an annular aperture consisting of three concentric annular zones to effect amplitude and phase modulation, the 1.45NA cover-layer-protected SIL-based NFR optics achieved a data recording density as high as that of conventional 1.80NA SIL-based NFR optics. These 1.45NA optics yielded a full-width at half-maximum (FWHM) spot size of 0.315λ, a focal depth of 0.82λ, a focused beam spot sensitivity to air-gap-distance within the near-field region of 0.04λ, and a sidelobe intensity lower than 7%. In comparison with conventional 1.80NA SIL-based NFR optics, the annular aperture optics achieved 3.5 times longer focal depth and much lower focused beam spot sensitivity to air-gap distance while maintaining the same high resolution. The introduction of this novel specially designed NFR optics could greatly improve data capacity in multiple-recording layered NFR.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  2. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339-4348 (1997).
    [CrossRef] [PubMed]
  3. M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
    [CrossRef]
  4. C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, “High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system,” Jpn. J. Appl. Phys., Part 1 46, 3889-3893 (2007).
    [CrossRef]
  5. J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a multi-layer near-field recording system: dual-layer recording result,” Jpn. J. Appl. Phys., Part 1 46, 3894-3897 (2007).
    [CrossRef]
  6. Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
    [CrossRef]
  7. T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
    [CrossRef]
  8. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50, 749-753 (1960).
    [CrossRef]
  9. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501-506 (2008).
    [CrossRef]
  10. H. Wang and F. Gan, “High focal depth with a pure-phase apodizer,” Appl. Opt. 40, 5658-5662 (2001).
    [CrossRef]
  11. H. Wang and F. Gan, “Phase-shifting apodizers for increasing focal depth,” Appl. Opt. 41, 5263-5266 (2002).
    [CrossRef] [PubMed]
  12. C. Liu and S. H. Park, “Numerical analysis of an annular-aperture solid immersion lens,” Opt. Lett. 29, 1742-1744 (2004).
    [CrossRef] [PubMed]
  13. Y. J. Zhang, H. C. Ciao, and C. W. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75-14 (2004).
    [CrossRef]
  14. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
    [CrossRef]
  15. A. van de Nes, L. Billy, S. Pereira, and J. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system,” Opt. Express 12, 1281-1293 (2004).
    [CrossRef] [PubMed]
  16. W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, “Effects of optical variables in immersion lens-based near-field optics,” Opt. Express 16, 13933-13948 (2008).
    [CrossRef] [PubMed]
  17. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322-4327 (2004).
    [CrossRef] [PubMed]
  18. W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
    [CrossRef]
  19. Y. Lu, J. Xie, and H. Ming, “Binary pure-phase filter optimized the optical distribution of solid immersion lens,” Opt. Commun. 215, 251-255 (2003).
    [CrossRef]
  20. F. Zijp, J. M. A. van den Eerenbeemd, D. M. Bruls, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys., Part 1 45, 1341-1347 (2006).
    [CrossRef]
  21. J. M. A. van den Eerenbeemd, F. Zijp, and S. Stallinga, “Feasibility study on a 4-layer cover-incident near-field recording system,” Proc. SPIE 6282, 62820Q-1-10 (2006).
    [CrossRef]
  22. H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys., Part 1 31, 557-567 (1992).
    [CrossRef]

2009

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

2008

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501-506 (2008).
[CrossRef]

W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, “Effects of optical variables in immersion lens-based near-field optics,” Opt. Express 16, 13933-13948 (2008).
[CrossRef] [PubMed]

2007

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, “High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system,” Jpn. J. Appl. Phys., Part 1 46, 3889-3893 (2007).
[CrossRef]

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a multi-layer near-field recording system: dual-layer recording result,” Jpn. J. Appl. Phys., Part 1 46, 3894-3897 (2007).
[CrossRef]

2006

W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
[CrossRef]

F. Zijp, J. M. A. van den Eerenbeemd, D. M. Bruls, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys., Part 1 45, 1341-1347 (2006).
[CrossRef]

J. M. A. van den Eerenbeemd, F. Zijp, and S. Stallinga, “Feasibility study on a 4-layer cover-incident near-field recording system,” Proc. SPIE 6282, 62820Q-1-10 (2006).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

2004

2003

Y. Lu, J. Xie, and H. Ming, “Binary pure-phase filter optimized the optical distribution of solid immersion lens,” Opt. Commun. 215, 251-255 (2003).
[CrossRef]

2002

2001

1997

1992

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys., Part 1 31, 557-567 (1992).
[CrossRef]

1990

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1960

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Ando, H.

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys., Part 1 31, 557-567 (1992).
[CrossRef]

Billy, L.

Braat, J.

Bruls, D. M.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a multi-layer near-field recording system: dual-layer recording result,” Jpn. J. Appl. Phys., Part 1 46, 3894-3897 (2007).
[CrossRef]

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, “High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system,” Jpn. J. Appl. Phys., Part 1 46, 3889-3893 (2007).
[CrossRef]

F. Zijp, J. M. A. van den Eerenbeemd, D. M. Bruls, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys., Part 1 45, 1341-1347 (2006).
[CrossRef]

Choi, H.

W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, “Effects of optical variables in immersion lens-based near-field optics,” Opt. Express 16, 13933-13948 (2008).
[CrossRef] [PubMed]

W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
[CrossRef]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501-506 (2008).
[CrossRef]

Choudhury, A.

Ciao, H. C.

Y. J. Zhang, H. C. Ciao, and C. W. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75-14 (2004).
[CrossRef]

Fujiura, K.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

Furuki, M.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

Gan, F.

Hayashi, S.

Honda, M.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Hong, T.

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

Ichimura, I.

Ishimoto, T.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Kawakubo, O.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Kim, S.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Kim, W. C.

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, “Effects of optical variables in immersion lens-based near-field optics,” Opt. Express 16, 13933-13948 (2008).
[CrossRef] [PubMed]

W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
[CrossRef]

Kim, Y. J.

W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
[CrossRef]

Kino, G. S.

Kondo, T.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

Lee, K.

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

Liu, C.

Lu, Y.

Y. Lu, J. Xie, and H. Ming, “Binary pure-phase filter optimized the optical distribution of solid immersion lens,” Opt. Commun. 215, 251-255 (2003).
[CrossRef]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501-506 (2008).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Min, C. K.

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

Ming, H.

Y. Lu, J. Xie, and H. Ming, “Binary pure-phase filter optimized the optical distribution of solid immersion lens,” Opt. Commun. 215, 251-255 (2003).
[CrossRef]

Mizukuki, T.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Nakaoki, A.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

Park, N. C.

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, “Effects of optical variables in immersion lens-based near-field optics,” Opt. Express 16, 13933-13948 (2008).
[CrossRef] [PubMed]

W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
[CrossRef]

Park, S. H.

Park, Y. P.

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, “Effects of optical variables in immersion lens-based near-field optics,” Opt. Express 16, 13933-13948 (2008).
[CrossRef] [PubMed]

W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
[CrossRef]

Pereira, S.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Saito, K.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

Saito, N.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Sasaura, M.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501-506 (2008).
[CrossRef]

Sheppard, C. J. R.

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501-506 (2008).
[CrossRef]

Shinoda, M.

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

Shinohara, N.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Song, T.

W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
[CrossRef]

Stallinga, S.

J. M. A. van den Eerenbeemd, F. Zijp, and S. Stallinga, “Feasibility study on a 4-layer cover-incident near-field recording system,” Proc. SPIE 6282, 62820Q-1-10 (2006).
[CrossRef]

van de Nes, A.

van den Eerenbeemd, J. M. A.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a multi-layer near-field recording system: dual-layer recording result,” Jpn. J. Appl. Phys., Part 1 46, 3894-3897 (2007).
[CrossRef]

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, “High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system,” Jpn. J. Appl. Phys., Part 1 46, 3889-3893 (2007).
[CrossRef]

J. M. A. van den Eerenbeemd, F. Zijp, and S. Stallinga, “Feasibility study on a 4-layer cover-incident near-field recording system,” Proc. SPIE 6282, 62820Q-1-10 (2006).
[CrossRef]

F. Zijp, J. M. A. van den Eerenbeemd, D. M. Bruls, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys., Part 1 45, 1341-1347 (2006).
[CrossRef]

Verschuren, C. A.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a multi-layer near-field recording system: dual-layer recording result,” Jpn. J. Appl. Phys., Part 1 46, 3894-3897 (2007).
[CrossRef]

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, “High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system,” Jpn. J. Appl. Phys., Part 1 46, 3889-3893 (2007).
[CrossRef]

F. Zijp, J. M. A. van den Eerenbeemd, D. M. Bruls, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys., Part 1 45, 1341-1347 (2006).
[CrossRef]

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501-506 (2008).
[CrossRef]

H. Wang and F. Gan, “Phase-shifting apodizers for increasing focal depth,” Appl. Opt. 41, 5263-5266 (2002).
[CrossRef] [PubMed]

H. Wang and F. Gan, “High focal depth with a pure-phase apodizer,” Appl. Opt. 40, 5658-5662 (2001).
[CrossRef]

Welford, W. T.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Xie, J.

Y. Lu, J. Xie, and H. Ming, “Binary pure-phase filter optimized the optical distribution of solid immersion lens,” Opt. Commun. 215, 251-255 (2003).
[CrossRef]

Yamasaki, T.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Yin, B.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a multi-layer near-field recording system: dual-layer recording result,” Jpn. J. Appl. Phys., Part 1 46, 3894-3897 (2007).
[CrossRef]

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, “High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system,” Jpn. J. Appl. Phys., Part 1 46, 3889-3893 (2007).
[CrossRef]

Yoon, Y. J.

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, “Effects of optical variables in immersion lens-based near-field optics,” Opt. Express 16, 13933-13948 (2008).
[CrossRef] [PubMed]

Yukmoto, T.

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Zhang, Y. J.

Y. J. Zhang, H. C. Ciao, and C. W. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75-14 (2004).
[CrossRef]

Zheng, C. W.

Y. J. Zhang, H. C. Ciao, and C. W. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75-14 (2004).
[CrossRef]

Zijp, F.

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a multi-layer near-field recording system: dual-layer recording result,” Jpn. J. Appl. Phys., Part 1 46, 3894-3897 (2007).
[CrossRef]

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, “High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system,” Jpn. J. Appl. Phys., Part 1 46, 3889-3893 (2007).
[CrossRef]

J. M. A. van den Eerenbeemd, F. Zijp, and S. Stallinga, “Feasibility study on a 4-layer cover-incident near-field recording system,” Proc. SPIE 6282, 62820Q-1-10 (2006).
[CrossRef]

F. Zijp, J. M. A. van den Eerenbeemd, D. M. Bruls, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys., Part 1 45, 1341-1347 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

Y. J. Yoon, C. K. Min, W. C. Kim, N. C. Park, Y. P. Park, T. Hong, and K. Lee, “Solid immersion lens optical head for high-numerical-aperture cover-layered incident near-field recording,” Jpn. J. Appl. Phys. 48, 03A040 (2009).
[CrossRef]

T. Ishimoto, A. Nakaoki, K. Saito, T. Yamasaki, T. Yukmoto, S. Kim, T. Kondo, T. Mizukuki, O. Kawakubo, M. Honda, N. Shinohara, and N. Saito, “High-density recording with a near-field optical disk system using a medium with a top layer of high refractive index,” Jpn. J. Appl. Phys. 48, 03A015 (2009).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

M. Shinoda, K. Saito, T. Kondo, M. Furuki, A. Nakaoki, M. Sasaura, and K. Fujiura, “High-density near-field readout using solid immersion lens made of KTaO3 monocrystal,” Jpn. J. Appl. Phys., Part 1 45, 1332-1335 (2006).
[CrossRef]

C. A. Verschuren, D. M. Bruls, B. Yin, J. M. A. van den Eerenbeemd, and F. Zijp, “High-density near-field recording on cover-layer protected discs using an actuated 1.45 numerical aperture solid immersion lens in a robust and practical system,” Jpn. J. Appl. Phys., Part 1 46, 3889-3893 (2007).
[CrossRef]

J. M. A. van den Eerenbeemd, D. M. Bruls, C. A. Verschuren, B. Yin, and F. Zijp, “Towards a multi-layer near-field recording system: dual-layer recording result,” Jpn. J. Appl. Phys., Part 1 46, 3894-3897 (2007).
[CrossRef]

W. C. Kim, H. Choi, T. Song, N. C. Park, Y. P. Park, and Y. J. Kim, “Novel cover-layer-incident dual-layer near-field recording optics using hemispherical solid-immersion-lens,” Jpn. J. Appl. Phys., Part 1 45, 1363-1365 (2006).
[CrossRef]

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys., Part 1 31, 557-567 (1992).
[CrossRef]

F. Zijp, J. M. A. van den Eerenbeemd, D. M. Bruls, and C. A. Verschuren, “Effects of polarization on wave front measurements and manufacturing of solid immersion lenses for near-field optical recording,” Jpn. J. Appl. Phys., Part 1 45, 1341-1347 (2006).
[CrossRef]

Nat. Photonics

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501-506 (2008).
[CrossRef]

New J. Phys.

Y. J. Zhang, H. C. Ciao, and C. W. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75-14 (2004).
[CrossRef]

Opt. Commun.

Y. Lu, J. Xie, and H. Ming, “Binary pure-phase filter optimized the optical distribution of solid immersion lens,” Opt. Commun. 215, 251-255 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. R. Soc. London, Ser. A

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959).
[CrossRef]

Proc. SPIE

J. M. A. van den Eerenbeemd, F. Zijp, and S. Stallinga, “Feasibility study on a 4-layer cover-incident near-field recording system,” Proc. SPIE 6282, 62820Q-1-10 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic configuration of an aplanatic optics system with an annular aperture having annular zones with different amplitudes and phases. The illuminating light on the entrance pupil exhibited varying intensity and phase because of the annular aperture zones. Light traveled to the exit pupil with varying intensity and phase and focused in the image-side focal region at a geometric focal length R. The image-side focal region medium consisted of multiple layers with different refractive indices causing multiple-beam interference. Z 1 is the bottom surface of the SIL and Z 2 is the top surface of the sample.

Fig. 2
Fig. 2

Schematic configuration of the annular aperture and optical head including the multilayered medium. The annular aperture is positioned in front of the objective lens and consists of three annular zones: zone 1 ( 0 k r k 0 ϵ 1 ) with intensity 1 and phase shift 0, zone 2 ( ϵ 1 k r k 0 ϵ 2 : k r = k 0 for ϵ 2 ) with intensity 0 and phase shift 0, zone 3 ( ϵ 2 k r k 0 ϵ 3 : k r = NA k 0 for ϵ 3 ) with intensity 1 and phase shift π 2 . The light focuses on the middle plane in the GeSbTe layer.

Fig. 3
Fig. 3

Electric field characteristics on the focal plane given a λ 8 air-gap distance: (a) reduction ratio of FWHM, sidelobe intensity ratio, and central peak intensity ratio for various ϵ 1 and (b) extended focal depth for various ϵ 1 .

Fig. 4
Fig. 4

Normalized intensities on the focal plane given a λ 8 air-gap distance.

Fig. 5
Fig. 5

Electric field distributions and normalized intensities for NA = 1.45 and a λ 8 air-gap distance: (a) E x 2 + E y 2 without an aperture, (b) E z 2 without an aperture, (c) intensity distribution without an aperture, (d) E x 2 + E y 2 with an aperture, (e) E z 2 with an aperture, and (f) intensity distribution with an aperture.

Fig. 6
Fig. 6

Total field distributions given a λ 8 air-gap distance: (a) NA = 1.45 without an aperture, (b) NA = 1.45 with an aperture, (c) NA = 1.80 without an aperture, and (d) normalized intensity distribution along the propagation axis.

Fig. 7
Fig. 7

Normalized intensity on the focal plane for various air-gap distances and with and without phase modulation in zone 3: (a) NA = 1.45 without an aperture, (b) NA = 1.45 with amplitude and phase modulation in zone 3, and (c) NA = 1.80 without an aperture.

Tables (1)

Tables Icon

Table 1 Optical Characteristics Given a λ 8 Air-Gap Distance a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ̃ ( r , φ , z ) = i = 1 N { j R k z 1 k 1 k r i 1 k r i C i 1 , i M k r d k r } ,
C i 1 , i = E 0 t i e j ϕ i ,
M = [ M l + e + j k z l z + M l e j k z l z ] ,
M l ± = [ g l 0 ± J 0 ( c ) g l 2 ± J 2 ( c ) g l 2 ± J 2 ( s ) 0 g l 2 ± J 2 ( s ) g l 0 ± J 0 ( c ) + g l 2 ± J 2 ( c ) 0 g l 1 ± J 1 ( c ) g l 1 ± J 1 ( s ) 0 ] ,
I circular = | E ̃ | 2 | E ̃ | max 2 = | M 1 + | 2 = | [ ( g 1 0 + J 0 ( c ) g 1 2 + J 2 ( c ) ) e i π 4 g 1 2 + J 2 ( s ) e i π 4 g 1 2 + J 2 ( s ) e i π 4 + ( g 1 0 + J 0 ( c ) + g 1 2 + J 2 ( c ) ) e i π 4 g 1 1 + J 1 ( c ) e i π 4 g 1 1 + J 1 ( s ) e i π 4 ] | 2 ,
C i 1 , i = E 0 t i e j ϕ i = { E 0 0 E 0 e j π 2 } for i = 1 , 2 , and 3 .

Metrics