Abstract

Phase sensitive x-ray imaging extends standard x-ray microscopy techniques by offering up to a thousand times higher sensitivity than absorption-based techniques. If an object is illuminated with a sufficiently coherent beam, phase contrast is achieved by moving the detector downstream from the object. There is a quantitative relationship between the phase shift induced by the object and the recorded intensity. This relationship can be used to retrieve the phase shift induced by the object through the solution of an inverse problem. Since the phase shift can be considered as a projection through the 3D refractive index, the latter can be reconstructed using standard tomographic inversion techniques. However, the determination of the phase shift from the recorded intensity is an ill-posed inverse problem. We investigate the application of Fourier-wavelet regularized deconvolution (ForWaRD) to this problem. The method is evaluated using simulated and experimental data and is shown to increase the quality of reconstructions, in terms of normalized RMS error and compared with standard Tikhonov regularization, at a three times increase in computational cost.

© 2009 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription