Abstract

Truncated expansions such as Zernike polynomials provide a powerful approach for describing wavefront data. However, many simple calculations with data in this form can require significant computational effort. Important examples include recentering, renormalizing, and translating the wavefront data. This paper describes a technique whereby these operations and many others can be performed with a simple matrix approach using monomials. The technique may be applied to other expansions by reordering the data and applying transformations. The key is the use of the vectorization operator to convert data between vector and matrix descriptions. With this conversion, one-dimensional polynomial techniques may be employed to perform separable operations. Examples are also given for differentiation and integration of wavefronts.

© 2009 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription