Abstract

Utilizing the diffraction property of the output light from micro/nano fibers (MNFs), a new scheme based on a MNF array to focus optical beams with subwavelength resolution in the far field is proposed. By using the three-dimensional finite-difference beam-propagation method (FD-BPM), we investigated the diffraction interference effect of the MNFs during light propagation. The numerical stimulation demonstrates a focusing spot with FWHM of 0.43λ at a distance of 9λ from the output endface of MNF array. The effects of the characteristics of the array, the MNFs, and the input optical field on focusing are analyzed in detail.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141-143 (1996).
    [CrossRef]
  2. H. Schmid, H. Biebuyck, and B. Michel, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379-2381 (1998).
    [CrossRef]
  3. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
    [CrossRef] [PubMed]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21-27 (2006).
  5. Y. X. Mao, S. D. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46, 5887-5894 (2007).
    [CrossRef] [PubMed]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  8. F. M. Huang, N. Zheludev, Y. Chen,, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
    [CrossRef]
  9. T. Xu, C. Du, C. Wang, and X. Luo, “Sub-wavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91, 201501 (2007).
    [CrossRef]
  10. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006).
    [CrossRef] [PubMed]
  11. C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array,” Appl. Phys. Lett. 84, 1540-1542 (2004).
    [CrossRef]
  12. Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
    [CrossRef]
  13. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
    [CrossRef]
  14. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992-1996 (1999).
    [CrossRef]
  15. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
    [CrossRef]
  16. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of sub-wavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  17. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
    [CrossRef] [PubMed]
  18. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  19. Y. H. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or MNFs,” Opt. Lett. 33, 303-305 (2008).
    [CrossRef] [PubMed]
  20. X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710-1712 (2007).
    [CrossRef] [PubMed]
  21. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
    [CrossRef] [PubMed]
  22. X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 88, 223501 (2006).
    [CrossRef]
  23. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273-1275 (2005).
    [CrossRef] [PubMed]
  24. S.-S. Wang, J. Fu, M. Qiu, K.-J. Huang, Z. Ma, and L.-M. Tong, “Modeling endface output patterns of optical micro/MNFs,” Opt. Express 16, 8887-8895 (2008).
    [CrossRef] [PubMed]
  25. M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A 39, 6965-6977 (2006).
    [CrossRef]
  26. L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008).
    [CrossRef]
  27. L. De Stefano, I. Real, I. Rendinal, M. De Stefano, and L. Moretti, “Lensless light focusing with the centric marine diatom Coscinodiscus walesii,” Opt. Express 15, 18082-18088 (2007).
    [CrossRef] [PubMed]
  28. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772-778 (1967).
    [CrossRef]

2008

2007

2006

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21-27 (2006).

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A 39, 6965-6977 (2006).
[CrossRef]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

2005

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273-1275 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

2004

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array,” Appl. Phys. Lett. 84, 1540-1542 (2004).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of sub-wavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
[CrossRef] [PubMed]

2003

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999

N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
[CrossRef]

J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992-1996 (1999).
[CrossRef]

1998

H. Schmid, H. Biebuyck, and B. Michel, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379-2381 (1998).
[CrossRef]

1996

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

1967

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Bello, I.

N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
[CrossRef]

Berry, M. V.

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A 39, 6965-6977 (2006).
[CrossRef]

Biebuyck, H.

H. Schmid, H. Biebuyck, and B. Michel, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379-2381 (1998).
[CrossRef]

Birks, T. A.

Bures, J.

Chan, S. K.

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
[CrossRef]

Chan, Y. F.

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
[CrossRef]

Chang, S. D.

Chen, B. J.

C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array,” Appl. Phys. Lett. 84, 1540-1542 (2004).
[CrossRef]

Chen, X. W.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Chen, Y.

F. M. Huang, N. Zheludev, Y. Chen,, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710-1712 (2007).
[CrossRef] [PubMed]

De Stefano, L.

De Stefano, M.

Du, C.

T. Xu, C. Du, C. Wang, and X. Luo, “Sub-wavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

Duan, X. F.

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
[CrossRef]

Flueraru, C.

Fu, J.

Garcia de Abajo, F. J.

F. M. Huang, N. Zheludev, Y. Chen,, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Gattass, R. R.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Ghosh, R.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21-27 (2006).

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

He, J. L.

He, S. L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Hu, L. L.

Huang, F. M.

F. M. Huang, N. Zheludev, Y. Chen,, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Huang, K.-J.

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Jiang, X. S.

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710-1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Kalkbrenner, T.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Lee, C. S.

N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
[CrossRef]

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lee, S. T.

N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
[CrossRef]

Leon-Saval, S. G.

Li, Y. H.

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lindfors, K.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Liu, L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Lou, J. Y.

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of sub-wavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Luo, X.

T. Xu, C. Du, C. Wang, and X. Luo, “Sub-wavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

Ma, Z.

Mamin, H. J.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

Mansuripur, M.

Mao, Y. X.

Mason, M. W.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Mazur, E.

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of sub-wavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Michel, B.

H. Schmid, H. Biebuyck, and B. Michel, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379-2381 (1998).
[CrossRef]

Montgomery, W. D.

Moretti, L.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Popescu, S.

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A 39, 6965-6977 (2006).
[CrossRef]

Qiu, J. R.

Qiu, M.

Real, I.

Rendinal, I.

Rugar, D.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

Russell, P. St. J.

Sandoghdar, V.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Schmid, H.

H. Schmid, H. Biebuyck, and B. Michel, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379-2381 (1998).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Shen, Y. H.

Sherif, S.

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sou, I. K.

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
[CrossRef]

Stoller, P.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Sun, X. W.

C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array,” Appl. Phys. Lett. 84, 1540-1542 (2004).
[CrossRef]

Tang, Y. H.

N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

Tong, L.

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008).
[CrossRef]

Tong, L. M.

Y. H. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or MNFs,” Opt. Lett. 33, 303-305 (2008).
[CrossRef] [PubMed]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710-1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of sub-wavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Tong, L.-M.

Vienne, G.

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710-1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Wadsworth, W. J.

Wang, C.

T. Xu, C. Du, C. Wang, and X. Luo, “Sub-wavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

Wang, N.

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
[CrossRef]

N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
[CrossRef]

Wang, S.-S.

Xu, C. X.

C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array,” Appl. Phys. Lett. 84, 1540-1542 (2004).
[CrossRef]

Xu, T.

T. Xu, C. Du, C. Wang, and X. Luo, “Sub-wavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yang, Q.

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Ye, Z. Z.

Zhang, J. J.

Zhang, X. X.

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
[CrossRef]

Zhang, Y. F.

N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
[CrossRef]

Zheludev, N.

F. M. Huang, N. Zheludev, Y. Chen,, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141-143 (1996).
[CrossRef]

H. Schmid, H. Biebuyck, and B. Michel, “Light-coupling masks for lensless, sub-wavelength optical lithography,” Appl. Phys. Lett. 72, 2379-2381 (1998).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen,, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

T. Xu, C. Du, C. Wang, and X. Luo, “Sub-wavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91, 201501 (2007).
[CrossRef]

C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array,” Appl. Phys. Lett. 84, 1540-1542 (2004).
[CrossRef]

Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy,” Appl. Phys. Lett. 83, 2665-2667 (2003).
[CrossRef]

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Chem. Phys. Lett.

N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si nanowires grown from silicon oxide,” Chem. Phys. Lett. 299, 237-242 (1999).
[CrossRef]

J. Non-Cryst. Solids

L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354, 1240-1244 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. A

M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A 39, 6965-6977 (2006).
[CrossRef]

Nano Lett.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 21-27 (2006).

Nature (London)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength-diameter silica wires for low-loss optical wave guiding,” Nature (London) 426, 816-819 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Science

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MPG (1256 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculation model of the designed MNF array.

Fig. 2
Fig. 2

Array structure and calculation results. (a) Section diagram of the circle array model. (b) Process of the lightwave propagating along the fiber and then focusing at a distance from the endfaces of the MNFs, where the black lines map the projection profile of the MNFs in the X–Z plane. (c) 3D intensity distribution at the focal point in the X–Y plane. (d) Normalized intensity distribution at the focus point along the X axis.

Fig. 3
Fig. 3

Three array structures with different quantities of MNFs and the calculation results: (a), (b), and (c) show, respectively, single-circle, double-circle, and three- circle arrays. The left figures are the section diagrams of the three-circle arrays, the middle figures are the intensity distributions in X–Z plane, and the right figures are the normalized intensity distributions in the X–Y plane at a distance of 5.4 μ m from the endfaces.

Fig. 4
Fig. 4

(a) Intensity distributions in the X–Z plane for arrays of different size, from left to right, are respectively corresponding to (A), (B) and (C) (see text), where the white lines indicate the positions of the focus points. (b) Normalized intensity distributions at focus points along the X axis for (A), (B), and (C).

Fig. 5
Fig. 5

Effectss of refractive index on focal length and focus spot. (a) Focal length with respect to the refractive index of MNFs. (b) Intensity distributions at focus points in the X–Y plane for MNF arrays with refractive index of 1.45, 2.63, and 3.4 from left to right.

Fig. 6
Fig. 6

Intensity distributions in the X–Z plane. (a) The array is placed in air and the output field focus also in air; (b) the array is placed in a medium of index 1.4 but the output field focus in air; (c) the array is placed in a medium of index 1.4 and the output field focus also in the medium, where the white lines indicate the positions of the focus points.

Fig. 7
Fig. 7

Focal length with respect to the diameter of MNFs (the curve is fitted according to the original data).

Fig. 8
Fig. 8

Normalized intensity distributions at focus points along the X axis for arrays with different MNF diameters

Fig. 9
Fig. 9

Relationship between focal length and light wavelength. (a) Focal length with respect to the light wavelength. (b) Dynamic demonstration of the intensity distribution in the X–Z plane with varying wavelength (Media 1).

Metrics