Abstract

The spatial profile of the energy flux in a surface-plasmon-polariton (SPP) wave bound to the planar interface of a metal and a structurally chiral material (SCM) shows strong dependencies on the pitch of the SCM. More than one SPP-wave mode at the same frequency (or free-space wavelength) being possible for the chosen interface, the energy-flux profiles of different modes are different. Although the energy flux on the metal side of the interface decays exponentially with distance from the interface, the profile on the SCM side exhibits oscillations as a function of distance from the interface and decay rates, which are highly variable. Because of the periodic nature of the SCM, the Floquet–Lyapunov theorem may be invoked to explain this behavior.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V.M.Agranovich and D.L.Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1983).
  3. J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
    [CrossRef]
  4. M.L.Brongersmaa and P.G.Kik, eds., Surface Plasmon Nanophotonics (Springer, 2007).
    [CrossRef]
  5. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films--a novel undergraduate experiment,” Am. J. Phys. 43, 630-636 (1975).
    [CrossRef]
  6. D. Sarid, “Long-range surface-plasmon waves on very thin metal films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  7. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
    [CrossRef]
  8. R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
    [CrossRef]
  9. K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91-105 (1987).
    [CrossRef]
  10. R. A. Depine and M. L. Gigli, “Resonant excitation of surface modes at a single flat uniaxial-metal interface,” J. Opt. Soc. Am. A 14, 510-519 (1997).
    [CrossRef]
  11. D. Mihalache, D.-M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Hybrid surface plasmon polaritons guided by ultrathin metal films,” Opt. Quantum Electron. 26, 857-863 (1994).
    [CrossRef]
  12. A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291-297 (2007).
    [CrossRef]
  13. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophotonics 2, 021910 (2008).
    [CrossRef]
  14. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophotonics 3, 033502 (2009).
    [CrossRef]
  15. Y.-J. Jen and Y.-H. Liao, “Surface plasmon resonance via polarization conversion in a weak anisotropic thin film,” Appl. Phys. Lett. 94, 011105 (2009).
    [CrossRef]
  16. I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A, Pure Appl. Opt. 11, 015002 (2009).
    [CrossRef]
  17. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).
  18. J. B. Geddes III and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763-2783 (2006).
    [CrossRef]
  19. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
    [CrossRef]
  20. J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London, Ser. A 465, 87-107 (2009).
    [CrossRef]
  21. H. Hochstadt, Differential Equations: A Modern Approach (Dover, 1975).
  22. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  23. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

2009 (4)

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophotonics 3, 033502 (2009).
[CrossRef]

Y.-J. Jen and Y.-H. Liao, “Surface plasmon resonance via polarization conversion in a weak anisotropic thin film,” Appl. Phys. Lett. 94, 011105 (2009).
[CrossRef]

I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A, Pure Appl. Opt. 11, 015002 (2009).
[CrossRef]

J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London, Ser. A 465, 87-107 (2009).
[CrossRef]

2008 (2)

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophotonics 2, 021910 (2008).
[CrossRef]

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

2007 (2)

M.L.Brongersmaa and P.G.Kik, eds., Surface Plasmon Nanophotonics (Springer, 2007).
[CrossRef]

A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291-297 (2007).
[CrossRef]

2006 (2)

J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
[CrossRef]

J. B. Geddes III and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763-2783 (2006).
[CrossRef]

2005 (2)

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

1997 (1)

R. A. Depine and M. L. Gigli, “Resonant excitation of surface modes at a single flat uniaxial-metal interface,” J. Opt. Soc. Am. A 14, 510-519 (1997).
[CrossRef]

1994 (1)

D. Mihalache, D.-M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Hybrid surface plasmon polaritons guided by ultrathin metal films,” Opt. Quantum Electron. 26, 857-863 (1994).
[CrossRef]

1993 (1)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).

1987 (1)

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91-105 (1987).
[CrossRef]

1983 (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1983).

1982 (1)

V.M.Agranovich and D.L.Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

1981 (1)

D. Sarid, “Long-range surface-plasmon waves on very thin metal films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

1975 (3)

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films--a novel undergraduate experiment,” Am. J. Phys. 43, 630-636 (1975).
[CrossRef]

H. Hochstadt, Differential Equations: A Modern Approach (Dover, 1975).

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

Abdulhalim, I.

I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A, Pure Appl. Opt. 11, 015002 (2009).
[CrossRef]

Baboiu, D.-M.

D. Mihalache, D.-M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Hybrid surface plasmon polaritons guided by ultrathin metal films,” Opt. Quantum Electron. 26, 857-863 (1994).
[CrossRef]

Buchwald, W. R.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Chernyak, L.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Ciumac, M.

D. Mihalache, D.-M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Hybrid surface plasmon polaritons guided by ultrathin metal films,” Opt. Quantum Electron. 26, 857-863 (1994).
[CrossRef]

Clark, D.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Clark, M. G.

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91-105 (1987).
[CrossRef]

Cleary, J.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).

Del Barco, E.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Depine, R. A.

R. A. Depine and M. L. Gigli, “Resonant excitation of surface modes at a single flat uniaxial-metal interface,” J. Opt. Soc. Am. A 14, 510-519 (1997).
[CrossRef]

Geddes, J. B.

J. B. Geddes III and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763-2783 (2006).
[CrossRef]

Gigli, M. L.

R. A. Depine and M. L. Gigli, “Resonant excitation of surface modes at a single flat uniaxial-metal interface,” J. Opt. Soc. Am. A 14, 510-519 (1997).
[CrossRef]

Heinrich, H.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Henderson, J.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Hochstadt, H.

H. Hochstadt, Differential Equations: A Modern Approach (Dover, 1975).

Jen, Y.-J.

Y.-J. Jen and Y.-H. Liao, “Surface plasmon resonance via polarization conversion in a weak anisotropic thin film,” Appl. Phys. Lett. 94, 011105 (2009).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

Lakhtakia, A.

J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London, Ser. A 465, 87-107 (2009).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophotonics 3, 033502 (2009).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophotonics 2, 021910 (2008).
[CrossRef]

A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291-297 (2007).
[CrossRef]

J. B. Geddes III and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763-2783 (2006).
[CrossRef]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
[CrossRef]

Liao, Y.-H.

Y.-J. Jen and Y.-H. Liao, “Surface plasmon resonance via polarization conversion in a weak anisotropic thin film,” Appl. Phys. Lett. 94, 011105 (2009).
[CrossRef]

Lopatiuk, O.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Messier, R.

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
[CrossRef]

Mihalache, D.

D. Mihalache, D.-M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Hybrid surface plasmon polaritons guided by ultrathin metal films,” Opt. Quantum Electron. 26, 857-863 (1994).
[CrossRef]

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films--a novel undergraduate experiment,” Am. J. Phys. 43, 630-636 (1975).
[CrossRef]

Motyka, M. A.

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophotonics 3, 033502 (2009).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophotonics 2, 021910 (2008).
[CrossRef]

Peale, R. E.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Polo, J. A.

J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London, Ser. A 465, 87-107 (2009).
[CrossRef]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1983).

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

Sambles, J. R.

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91-105 (1987).
[CrossRef]

Santos, S.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasmon waves on very thin metal films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Simon, H. J.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films--a novel undergraduate experiment,” Am. J. Phys. 43, 630-636 (1975).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Starzhinskii, V. M.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Torner, L.

D. Mihalache, D.-M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Hybrid surface plasmon polaritons guided by ultrathin metal films,” Opt. Quantum Electron. 26, 857-863 (1994).
[CrossRef]

Torres, J. P.

D. Mihalache, D.-M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Hybrid surface plasmon polaritons guided by ultrathin metal films,” Opt. Quantum Electron. 26, 857-863 (1994).
[CrossRef]

Watson, J. G.

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films--a novel undergraduate experiment,” Am. J. Phys. 43, 630-636 (1975).
[CrossRef]

Welford, K. R.

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91-105 (1987).
[CrossRef]

Winningham, T. A.

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Yakubovich, V. A.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Am. J. Phys. (1)

H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmons in silver films--a novel undergraduate experiment,” Am. J. Phys. 43, 630-636 (1975).
[CrossRef]

Appl. Phys. Lett. (1)

Y.-J. Jen and Y.-H. Liao, “Surface plasmon resonance via polarization conversion in a weak anisotropic thin film,” Appl. Phys. Lett. 94, 011105 (2009).
[CrossRef]

J. Mod. Opt. (1)

J. B. Geddes III and A. Lakhtakia, “Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films,” J. Mod. Opt. 53, 2763-2783 (2006).
[CrossRef]

J. Nanophotonics (2)

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophotonics 2, 021910 (2008).
[CrossRef]

M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophotonics 3, 033502 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

I. Abdulhalim, “Surface plasmon TE and TM waves at the anisotropic film-metal interface,” J. Opt. A, Pure Appl. Opt. 11, 015002 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

R. A. Depine and M. L. Gigli, “Resonant excitation of surface modes at a single flat uniaxial-metal interface,” J. Opt. Soc. Am. A 14, 510-519 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

R. E. Peale, O. Lopatiuk, J. Cleary, S. Santos, J. Henderson, D. Clark, L. Chernyak, T. A. Winningham, E. Del Barco, H. Heinrich, and W. R. Buchwald, “Propagation of high-frequency surface plasmons on gold,” J. Opt. Soc. Am. B 25, 1708-1713 (2008).
[CrossRef]

Liq. Cryst. (1)

K. R. Welford, J. R. Sambles, and M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91-105 (1987).
[CrossRef]

Opt. Commun. (1)

A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291-297 (2007).
[CrossRef]

Opt. Quantum Electron. (1)

D. Mihalache, D.-M. Baboiu, M. Ciumac, L. Torner, and J. P. Torres, “Hybrid surface plasmon polaritons guided by ultrathin metal films,” Opt. Quantum Electron. 26, 857-863 (1994).
[CrossRef]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasmon waves on very thin metal films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. London, Ser. A 465, 87-107 (2009).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135-2136 (1968).

Other (8)

H. Hochstadt, Differential Equations: A Modern Approach (Dover, 1975).

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005).
[CrossRef]

V.M.Agranovich and D.L.Mills, eds., Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland, 1982).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1983).

J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
[CrossRef]

M.L.Brongersmaa and P.G.Kik, eds., Surface Plasmon Nanophotonics (Springer, 2007).
[CrossRef]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic showing the planar interface of half-spaces occupied by a metal and an SCM.

Fig. 2
Fig. 2

Variations of the three components of P ̱ ( z ) in (a)–(c) the metal and (d)–(f) the chiral STF for Mode 1 when Ω o Ω = 0.3 . For this SPP-wave mode, κ = ( 1.925 + i 0.004775 ) k o , 2 Ω α 1 = 0.1380 + i 11.86 , and 2 Ω α 2 = 0.8389 + i 2.531 .

Fig. 3
Fig. 3

Same as Fig. 2 except for Mode 2 when Ω o Ω = 0.3 . For this SPP-wave mode, κ = ( 1.820 + i 0.01238 ) k o , 2 Ω α 1 = 0.4609 + i 8.459 , and 2 Ω α 2 = 0.3226 + i 2.651 .

Fig. 4
Fig. 4

Same as Fig. 2 except for Mode 3 when Ω o Ω = 0.3 . For this SPP-wave mode, κ = ( 1.682 + i 0.002556 ) k o , 2 Ω α 1 = 0.01322 + i 2.712 , and 2 Ω α 2 = 0.3870 + i 0.9590 .

Fig. 5
Fig. 5

Same as Fig. 2 except for Mode 2 when Ω o Ω = 1.5 . For this SPP-wave mode, κ = ( 1.215 + i 0.003075 ) k o , 2 Ω α 1 = 3.113 + i 0.1043 , and 2 Ω α 2 = 3.078 + i 0.1036 .

Fig. 6
Fig. 6

Same as Fig. 2 except for Mode 4 when Ω o Ω = 0.15 . For this SPP-wave mode, κ = ( 1.759 + i 0.003432 ) k o , 2 Ω α 1 = 0.3971 + i 13.14 , and 2 Ω α 2 = 0.05003 + i 1.864 .

Fig. 7
Fig. 7

Same as Fig. 2 except for Mode 5 when Ω o Ω = 0.15 . For this SPP-wave mode, κ = ( 1.698 + i 0.0003705 ) k o , 2 Ω α 1 = 0.007410 + i 8.798 , and 2 Ω α 2 = 0.1917 + i 0.2344 .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ϵ ͇ st f ( z ) = S ͇ z ( z ) S ͇ y ( χ ) ϵ ͇ ref S ͇ y T ( χ ) S ͇ z T ( z ) , z 0 ,
ϵ ͇ ref = ϵ a u ̱ z u ̱ z + ϵ b u ̱ x u ̱ x + ϵ c u ̱ y u ̱ y ,
S ͇ z ( z ) = ( u ̱ x u ̱ x + u ̱ y u ̱ y ) cos ( h π z Ω ) + ( u ̱ y u ̱ x u ̱ x u ̱ y ) sin ( h π z Ω ) + u ̱ z u ̱ z ,
S ͇ y ( χ ) = ( u ̱ x u ̱ x + u ̱ z u ̱ z ) cos χ + ( u ̱ z u ̱ x u ̱ x u ̱ z ) sin χ + u ̱ y u ̱ y ,
{ E ̱ ( r ̱ ) = e ̱ ( z ) exp ( i κ x ) H ̱ ( r ̱ ) = h ̱ ( z ) exp ( i κ x ) } , z 0 ,
[ f ̱ ( z ) ] = [ e x ( z ) e y ( z ) h x ( z ) h y ( z ) ] T .
[ f ̱ ( 0 ) ] = [ 0 α met k o 1 0 α met k o η o 0 0 ϵ met η o ] [ a 1 a 2 ] ,
d d z [ f ̱ ( z ) ] = i [ P ͇ ( z ) ] [ f ̱ ( z ) ] , z > 0 ,
[ f ̱ ( 2 Ω ) ] = [ N ͇ ] [ f ̱ ( 0 + ) ]
[ N ͇ ] = exp { i 2 Ω [ Q ͇ ] } .
α n = i ln σ n 2 Ω , n [ 1 , 4 ] .
[ f ̱ ( 0 + ) ] = [ [ τ ̱ ] ( 1 ) [ τ ̱ ] ( 2 ) ] [ b 1 b 2 ]
[ Y ͇ ] [ a 1 a 2 b 1 b 2 ] = [ 0 0 0 0 ] .
det [ Y ͇ ] = 0
[ f ̱ ( z ) ] = [ F ͇ ( z ) ] exp { i [ Q ͇ ] z } [ f ̱ ( 0 + ) ] , z > 0 ,

Metrics