L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ilt): What is the impact to the photomask industry?” Proc. SPIE 6283, 62830X-1 (2006).

[CrossRef]

A. Erdmann, P. Evanschitzky, G. Citarella, T. Fühner, and P. D. Bisschop, “Rigorous mask modeling using waveguide and FDTD methods: An assessment for typical hyper NA imaging problems,” in Proc. SPIE 6283, 628319 (2006).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, “Fast evaluation of photomask near-fields in subwavelength 193 nm lithography,” Proc. SPIE 5377, 1528-1535 (2004).

[CrossRef]

Y. Granik, “Illuminator optimization methods in microlithography,” Proc. SPIE 5524, 217-229 (2004).

[CrossRef]

A. Erdmann, R. Farkas, T. Fuhner, B. Tollkuhn, and G. Kokai, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646-657 (2004).

[CrossRef]

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1-20 (2004).

[CrossRef]

J. Tirapu-Azpiroz, P. Burchard, and E. Yablonovitch, “Boundary layer model to account for thick mask effects in photolithography,” Proc. SPIE 5040, 1611-1619 (2003).

[CrossRef]

K. Adam and A. R. Neureuther, “Domain decomposition methods for the rapid electromagnetic simulation of photomask scattering,” J. Microlithogr. Microfabr. Microsyst. 1, 253-269 (2002).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651-665 (2001).

[CrossRef]

B. Salik, J. Rosen, and A. Yariv, “Average coherent approximation for partially cohernet optical systems,” J. Opt. Soc. Am. A 13, 2086-2090 (1996).

[CrossRef]

K. Lucas, H. Tanabe, and A. J. Strojwas, “Efficient and rigorous three-dimensional model for optical lithography simulation,” J. Opt. Soc. Am. A 13, 2187-2199 (1996).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed integer programming,” IEEE Trans. Image Process. 4, 1252-1257 (1995).

[CrossRef]
[PubMed]

C. M. Yuan, “Calculation of one-dimension lithographic aerial images using the vector theory,” IEEE Trans. Electron Devices 40, 1604-1613 (1993).

[CrossRef]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies--a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869-885 (1992).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138-152 (1992).

[CrossRef]

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ilt): What is the impact to the photomask industry?” Proc. SPIE 6283, 62830X-1 (2006).

[CrossRef]

K. Adam and A. R. Neureuther, “Domain decomposition methods for the rapid electromagnetic simulation of photomask scattering,” J. Microlithogr. Microfabr. Microsyst. 1, 253-269 (2002).

[CrossRef]

K. Adam, “Domain decomposition methods for the electromagnetic simulation of scattering from three-dimensional structures with applications in lithography,” Ph.D. thesis (University of California, Berkeley, 2001).

X. Ma and G. R. Arce, “Psm design for inverse lithography using illumination with samll partial coherence factor,” Proc. SPIE 7274, 727437 (2009).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization,” Opt. Express 17, 5783-5793 (2009).

[CrossRef]
[PubMed]

X. Ma and G. R. Arce, “Psm design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20126-20141 (2008).

[CrossRef]
[PubMed]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” Proc. SPIE 7140, 71401A (2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960-2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Proc. SPIE 6520, 65200U (2007).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066-15079 (2007).

[CrossRef]
[PubMed]

A. Erdmann, P. Evanschitzky, G. Citarella, T. Fühner, and P. D. Bisschop, “Rigorous mask modeling using waveguide and FDTD methods: An assessment for typical hyper NA imaging problems,” in Proc. SPIE 6283, 628319 (2006).

[CrossRef]

M. Born and E. Wolfe, Principles of Optics (Cambridge U. Press, 1999).

J. Tirapu-Azpiroz, P. Burchard, and E. Yablonovitch, “Boundary layer model to account for thick mask effects in photolithography,” Proc. SPIE 5040, 1611-1619 (2003).

[CrossRef]

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication2nd ed. (Publishing House of Electronics Industry, Beijing, China, 2003).

A. Erdmann, P. Evanschitzky, G. Citarella, T. Fühner, and P. D. Bisschop, “Rigorous mask modeling using waveguide and FDTD methods: An assessment for typical hyper NA imaging problems,” in Proc. SPIE 6283, 628319 (2006).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651-665 (2001).

[CrossRef]

A. Erdmann, P. Evanschitzky, G. Citarella, T. Fühner, and P. D. Bisschop, “Rigorous mask modeling using waveguide and FDTD methods: An assessment for typical hyper NA imaging problems,” in Proc. SPIE 6283, 628319 (2006).

[CrossRef]

A. Erdmann, R. Farkas, T. Fuhner, B. Tollkuhn, and G. Kokai, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646-657 (2004).

[CrossRef]

A. Erdmann, P. Evanschitzky, G. Citarella, T. Fühner, and P. D. Bisschop, “Rigorous mask modeling using waveguide and FDTD methods: An assessment for typical hyper NA imaging problems,” in Proc. SPIE 6283, 628319 (2006).

[CrossRef]

A. Erdmann, R. Farkas, T. Fuhner, B. Tollkuhn, and G. Kokai, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646-657 (2004).

[CrossRef]

A. Erdmann, R. Farkas, T. Fuhner, B. Tollkuhn, and G. Kokai, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646-657 (2004).

[CrossRef]

A. Erdmann, P. Evanschitzky, G. Citarella, T. Fühner, and P. D. Bisschop, “Rigorous mask modeling using waveguide and FDTD methods: An assessment for typical hyper NA imaging problems,” in Proc. SPIE 6283, 628319 (2006).

[CrossRef]

Y. Granik, “Illuminator optimization methods in microlithography,” Proc. SPIE 5524, 217-229 (2004).

[CrossRef]

A. Erdmann, R. Farkas, T. Fuhner, B. Tollkuhn, and G. Kokai, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646-657 (2004).

[CrossRef]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies--a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869-885 (1992).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651-665 (2001).

[CrossRef]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies--a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869-885 (1992).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651-665 (2001).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed integer programming,” IEEE Trans. Image Process. 4, 1252-1257 (1995).

[CrossRef]
[PubMed]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651-665 (2001).

[CrossRef]

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ilt): What is the impact to the photomask industry?” Proc. SPIE 6283, 62830X-1 (2006).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138-152 (1992).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization,” Opt. Express 17, 5783-5793 (2009).

[CrossRef]
[PubMed]

X. Ma and G. R. Arce, “Psm design for inverse lithography using illumination with samll partial coherence factor,” Proc. SPIE 7274, 727437 (2009).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960-2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” Proc. SPIE 7140, 71401A (2008).

[CrossRef]

X. Ma and G. R. Arce, “Psm design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20126-20141 (2008).

[CrossRef]
[PubMed]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Proc. SPIE 6520, 65200U (2007).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066-15079 (2007).

[CrossRef]
[PubMed]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651-665 (2001).

[CrossRef]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography--an inverse imaging problem,” IEEE Trans. Image Process. 16, 774-788 (2007).

[CrossRef]
[PubMed]

K. Adam and A. R. Neureuther, “Domain decomposition methods for the rapid electromagnetic simulation of photomask scattering,” J. Microlithogr. Microfabr. Microsyst. 1, 253-269 (2002).

[CrossRef]

A. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase shift masks,” IEEE Trans. Electron Devices 41, 895-902 (1994).

[CrossRef]

P. Yu and D. Z. Pan, “Tip-opc: a new topological invariant paradigm for pixel based optical proximity correction,” in Proceedings of the ACM/IEEE International Conference on Computer-Aided Design (ICCAD) (IEEE, 2007), pp. 847-853.

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ilt): What is the impact to the photomask industry?” Proc. SPIE 6283, 62830X-1 (2006).

[CrossRef]

C. Pierrat, A. Wong, and S. Vaidya, “Phase-shifting mask topography effects on lithographic image quality,” in IEEE International Electron Devices Meeting, Technical Digest (IEEE, 1992), pp. 53-56.

A. Poonawala and P. Milanfar, “Mask design for optical microlithography--an inverse imaging problem,” IEEE Trans. Image Process. 16, 774-788 (2007).

[CrossRef]
[PubMed]

A. Poonawala, “Mask design for single and double exposure optical microlithography: an inverse imaging approach,” Ph.D. thesis (University of California, Santa Cruz, 2007).

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed integer programming,” IEEE Trans. Image Process. 4, 1252-1257 (1995).

[CrossRef]
[PubMed]

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1-20 (2004).

[CrossRef]

F. Schellenberg, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2004).

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed integer programming,” IEEE Trans. Image Process. 4, 1252-1257 (1995).

[CrossRef]
[PubMed]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies--a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869-885 (1992).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, “Fast evaluation of photomask near-fields in subwavelength 193 nm lithography,” Proc. SPIE 5377, 1528-1535 (2004).

[CrossRef]

J. Tirapu-Azpiroz, P. Burchard, and E. Yablonovitch, “Boundary layer model to account for thick mask effects in photolithography,” Proc. SPIE 5040, 1611-1619 (2003).

[CrossRef]

J. Tirapu-Azpiroz, “Analysis and modeling of photomask near-fields in sub-wavelength deep ultraviolet lithography with optical proximity corrections,” Ph.D. thesis (University of California, Los Angeles, 2004).

A. Erdmann, R. Farkas, T. Fuhner, B. Tollkuhn, and G. Kokai, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646-657 (2004).

[CrossRef]

C. Pierrat, A. Wong, and S. Vaidya, “Phase-shifting mask topography effects on lithographic image quality,” in IEEE International Electron Devices Meeting, Technical Digest (IEEE, 1992), pp. 53-56.

R. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics (Wiley, 1995).

M. Born and E. Wolfe, Principles of Optics (Cambridge U. Press, 1999).

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651-665 (2001).

[CrossRef]

A. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase shift masks,” IEEE Trans. Electron Devices 41, 895-902 (1994).

[CrossRef]

C. Pierrat, A. Wong, and S. Vaidya, “Phase-shifting mask topography effects on lithographic image quality,” in IEEE International Electron Devices Meeting, Technical Digest (IEEE, 1992), pp. 53-56.

A. Wong, “Rigorous three-dimensional time-domain finite difference electromagnetic simulation,” Ph.D. thesis (University of California, Berkeley, 1994).

A. K. Wong, Resolution Enhancement Techniques (SPIE Press, 2001).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, “Fast evaluation of photomask near-fields in subwavelength 193 nm lithography,” Proc. SPIE 5377, 1528-1535 (2004).

[CrossRef]

J. Tirapu-Azpiroz, P. Burchard, and E. Yablonovitch, “Boundary layer model to account for thick mask effects in photolithography,” Proc. SPIE 5040, 1611-1619 (2003).

[CrossRef]

P. Yu and D. Z. Pan, “Tip-opc: a new topological invariant paradigm for pixel based optical proximity correction,” in Proceedings of the ACM/IEEE International Conference on Computer-Aided Design (ICCAD) (IEEE, 2007), pp. 847-853.

C. M. Yuan, “Calculation of one-dimension lithographic aerial images using the vector theory,” IEEE Trans. Electron Devices 40, 1604-1613 (1993).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138-152 (1992).

[CrossRef]

L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T. Dunham, “TCAD development for lithography resolution enhancement,” IBM J. Res. Dev. 45, 651-665 (2001).

[CrossRef]

C. M. Yuan, “Calculation of one-dimension lithographic aerial images using the vector theory,” IEEE Trans. Electron Devices 40, 1604-1613 (1993).

[CrossRef]

A. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase shift masks,” IEEE Trans. Electron Devices 41, 895-902 (1994).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed integer programming,” IEEE Trans. Image Process. 4, 1252-1257 (1995).

[CrossRef]
[PubMed]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography--an inverse imaging problem,” IEEE Trans. Image Process. 16, 774-788 (2007).

[CrossRef]
[PubMed]

L. Lam, S. W. Lee, and C. Y. Suen, “Thinning methodologies--a comprehensive survey,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 869-885 (1992).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138-152 (1992).

[CrossRef]

K. Adam and A. R. Neureuther, “Domain decomposition methods for the rapid electromagnetic simulation of photomask scattering,” J. Microlithogr. Microfabr. Microsyst. 1, 253-269 (2002).

[CrossRef]

B. Salik, J. Rosen, and A. Yariv, “Average coherent approximation for partially cohernet optical systems,” J. Opt. Soc. Am. A 13, 2086-2090 (1996).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960-2970 (2008).

[CrossRef]

K. Lucas, H. Tanabe, and A. J. Strojwas, “Efficient and rigorous three-dimensional model for optical lithography simulation,” J. Opt. Soc. Am. A 13, 2187-2199 (1996).

[CrossRef]

Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: Automated design and mask requirements,” J. Opt. Soc. Am. A 11, 2438-2452 (1994).

[CrossRef]

J. Tirapu-Azpiroz, P. Burchard, and E. Yablonovitch, “Boundary layer model to account for thick mask effects in photolithography,” Proc. SPIE 5040, 1611-1619 (2003).

[CrossRef]

J. Tirapu-Azpiroz and E. Yablonovitch, “Fast evaluation of photomask near-fields in subwavelength 193 nm lithography,” Proc. SPIE 5377, 1528-1535 (2004).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” Proc. SPIE 7140, 71401A (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Proc. SPIE 6520, 65200U (2007).

[CrossRef]

A. Erdmann, R. Farkas, T. Fuhner, B. Tollkuhn, and G. Kokai, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646-657 (2004).

[CrossRef]

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ilt): What is the impact to the photomask industry?” Proc. SPIE 6283, 62830X-1 (2006).

[CrossRef]

Y. Granik, “Illuminator optimization methods in microlithography,” Proc. SPIE 5524, 217-229 (2004).

[CrossRef]

F. Schellenberg, “Resolution enhancement technology: The past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1-20 (2004).

[CrossRef]

A. Erdmann, P. Evanschitzky, G. Citarella, T. Fühner, and P. D. Bisschop, “Rigorous mask modeling using waveguide and FDTD methods: An assessment for typical hyper NA imaging problems,” in Proc. SPIE 6283, 628319 (2006).

[CrossRef]

X. Ma and G. R. Arce, “Psm design for inverse lithography using illumination with samll partial coherence factor,” Proc. SPIE 7274, 727437 (2009).

[CrossRef]

C. Pierrat, A. Wong, and S. Vaidya, “Phase-shifting mask topography effects on lithographic image quality,” in IEEE International Electron Devices Meeting, Technical Digest (IEEE, 1992), pp. 53-56.

M. Born and E. Wolfe, Principles of Optics (Cambridge U. Press, 1999).

R. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics (Wiley, 1995).

J. Tirapu-Azpiroz, “Analysis and modeling of photomask near-fields in sub-wavelength deep ultraviolet lithography with optical proximity corrections,” Ph.D. thesis (University of California, Los Angeles, 2004).

K. Adam, “Domain decomposition methods for the electromagnetic simulation of scattering from three-dimensional structures with applications in lithography,” Ph.D. thesis (University of California, Berkeley, 2001).

A. Poonawala, “Mask design for single and double exposure optical microlithography: an inverse imaging approach,” Ph.D. thesis (University of California, Santa Cruz, 2007).

P. Yu and D. Z. Pan, “Tip-opc: a new topological invariant paradigm for pixel based optical proximity correction,” in Proceedings of the ACM/IEEE International Conference on Computer-Aided Design (ICCAD) (IEEE, 2007), pp. 847-853.

F. Schellenberg, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2004).

A. K. Wong, Resolution Enhancement Techniques (SPIE Press, 2001).

[CrossRef]

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication2nd ed. (Publishing House of Electronics Industry, Beijing, China, 2003).

A. Wong, “Rigorous three-dimensional time-domain finite difference electromagnetic simulation,” Ph.D. thesis (University of California, Berkeley, 1994).