Abstract

We analyze and propose a directional optical coupler embedded in photonic crystal, which is driven by an external command signal. Therefore, this switching cell can work in an all-optical switch. The switching method uses a low-power external command signal, inserted in the central coupling region, which acts as another waveguide. The switching process is based on the change from the bar state to the cross state due to the external command signal. In our simulations we used the plane wave expansion method, finite-difference time-domain method, and our own binary propagation method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Vol. 414, pp. 295-301.
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, 2008), pp. 66-93.
  3. S. G. Johnson and D. Joannopoulus, “Block-iterative frequency domain methods for Maxwell equations in planis basis,” Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  4. A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002).
    [PubMed]
  5. P.-G. Luan and K.-D. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263-3272 (2006).
    [CrossRef] [PubMed]
  6. F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, “All-optical switching structure based on a photonic crystal directional coupler,” Opt. Express 12, 161-167 (2004).
    [CrossRef] [PubMed]
  7. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
    [CrossRef]
  8. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147-149 (2008).
    [CrossRef] [PubMed]
  9. R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Springer-Verlag, 2003), pp. 351-368.
  10. S. Assefa and Y. A. Vlasov, “High-order dispersion in photonic crystal waveguides,” Opt. Express 15, 17562-17569 (2007).
    [CrossRef] [PubMed]
  11. C. P. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384-390 (2003).
    [CrossRef]
  12. S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
    [CrossRef]
  13. S. Yao, B. Mukheree, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
    [CrossRef]
  14. A. Rodriguez-Meral, P. Bonenfant, S. Baroni, and R. Wu, “Optical data networking: protocols, technologies, and architectures for next generation optical transport networks and optical internetworks,” J. Lightwave Technol. 18, 1885-1870 (2000).

2008 (1)

2007 (2)

S. Assefa and Y. A. Vlasov, “High-order dispersion in photonic crystal waveguides,” Opt. Express 15, 17562-17569 (2007).
[CrossRef] [PubMed]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

2006 (1)

2004 (1)

2003 (1)

2002 (1)

2001 (1)

2000 (2)

S. Yao, B. Mukheree, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

A. Rodriguez-Meral, P. Bonenfant, S. Baroni, and R. Wu, “Optical data networking: protocols, technologies, and architectures for next generation optical transport networks and optical internetworks,” J. Lightwave Technol. 18, 1885-1870 (2000).

1997 (1)

S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Vol. 414, pp. 295-301.

Assefa, S.

Baroni, S.

A. Rodriguez-Meral, P. Bonenfant, S. Baroni, and R. Wu, “Optical data networking: protocols, technologies, and architectures for next generation optical transport networks and optical internetworks,” J. Lightwave Technol. 18, 1885-1870 (2000).

Beggs, D. M.

Blasco, J.

Bonenfant, P.

A. Rodriguez-Meral, P. Bonenfant, S. Baroni, and R. Wu, “Optical data networking: protocols, technologies, and architectures for next generation optical transport networks and optical internetworks,” J. Lightwave Technol. 18, 1885-1870 (2000).

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Chang, K. -D.

Cuesta-Soto, F.

Danielsen, S. L.

S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Dixit, S.

S. Yao, B. Mukheree, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Durhuus, T.

S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Eggleton, B. J.

R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Springer-Verlag, 2003), pp. 351-368.

Garcia, J.

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, 2008), pp. 66-93.

Joannopoulus, D.

Joerggensen, C.

S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Johnson, S. G.

S. G. Johnson and D. Joannopoulus, “Block-iterative frequency domain methods for Maxwell equations in planis basis,” Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, 2008), pp. 66-93.

Krauss, T. F.

Luan, P. -G.

Marti, J.

Martinez, A.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, 2008), pp. 66-93.

Mikkelsen, B.

S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Mukheree, B.

S. Yao, B. Mukheree, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

O'Faolain, L.

Papadimitriou, C. P.

Papazoglou, C.

Pomportsis, A. S.

Prather, D. W.

Ramos, F.

Rodriguez-Meral, A.

A. Rodriguez-Meral, P. Bonenfant, S. Baroni, and R. Wu, “Optical data networking: protocols, technologies, and architectures for next generation optical transport networks and optical internetworks,” J. Lightwave Technol. 18, 1885-1870 (2000).

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Sanchis, P.

Sharkawy, A.

Shi, S.

Slusher, R. E.

R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Springer-Verlag, 2003), pp. 351-368.

Sutbkjaer, K. E.

S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

Vlasov, Y. A.

White, T. P.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, 2008), pp. 66-93.

Wu, R.

A. Rodriguez-Meral, P. Bonenfant, S. Baroni, and R. Wu, “Optical data networking: protocols, technologies, and architectures for next generation optical transport networks and optical internetworks,” J. Lightwave Technol. 18, 1885-1870 (2000).

Yao, S.

S. Yao, B. Mukheree, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

S. Yao, B. Mukheree, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

J. Lightwave Technol. (3)

A. Rodriguez-Meral, P. Bonenfant, S. Baroni, and R. Wu, “Optical data networking: protocols, technologies, and architectures for next generation optical transport networks and optical internetworks,” J. Lightwave Technol. 18, 1885-1870 (2000).

C. P. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol. 21, 384-390 (2003).
[CrossRef]

S. L. Danielsen, B. Mikkelsen, C. Joerggensen, T. Durhuus, and K. E. Sutbkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Other (3)

R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Springer-Verlag, 2003), pp. 351-368.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Vol. 414, pp. 295-301.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton U. Press, 2008), pp. 66-93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the coupler.

Fig. 2
Fig. 2

Dispersion relation of the PhC coupler (even and odd modes).

Fig. 3
Fig. 3

(a) Prior to the command signal insertion, all entry optical power exits through the B1 port. (b) After the command signal insertion all entry optical power now exits through the B2 port.

Fig. 4
Fig. 4

Dispersion relation of the command signal.

Fig. 5
Fig. 5

Left part: electric field distribution concerning the data signal inside the coupler with length of 10 L c , before the insertion of the command signal. Central part: electric field distribution of the data signal inside the coupler, after the insertion of the command signal. Right side: electric field distribution referring to the command signal inside the coupler.

Fig. 6
Fig. 6

Command signal power P versus data signal wavelength (coupler length ten times greater than the minimal coupler length).

Fig. 7
Fig. 7

Δ n transmission versus coupling coefficient.

Fig. 8
Fig. 8

Coupling coefficient offset.

Fig. 9
Fig. 9

4 × 4 self-controlled crossbar switch fabric.

Tables (2)

Tables Icon

Table 1 Δ β versus Coupler Length

Tables Icon

Table 2 Required Difference in the Refractive Index and the Needed Optical Power of the Command Signal

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

L c = π β odd β even ( cross   state ) .
L c = π 2 k ( cross   state ) .
A a ( z ) = A 0   cos ( k z )   and   I a ( z ) = A 0 2 ( cos ( k z ) ) 2 ,
A b ( z ) = i A 0   sin ( k z )   and   I b ( z ) = A 0 2 ( sin ( k z ) ) 2 .
P = ( Δ n ) A eff 3 n 2 ( v g u v g c ) .
Δ β c ( n ) = ( 2 n 1 ) π n L c = ( 2 n 1 ) 2. n Δ β d .
Δ n = λ Δ β d 4 π ,
Δ n ( n ) n L c = λ / 2 ,
Δ n ( n ) = λ Δ β d 4 π n .
A 1 z + 1 V g A 1 t + i 2 β 2 2 A 1 t 2 + α 2 A 1 = i γ ( | A 1 | 2 + B | A 2 | 2 ) A 1 + i k A 2 ,
A 2 z + 1 V g A 2 t + i 2 β 2 2 A 2 t 2 + α 2 A 2 = i γ ( | A 2 | 2 + B | A 1 | 2 ) A 2 + i k A 1 ,

Metrics