Abstract

Various technologies for the implementation of a WiMAX (IEEE802.16) base station on board a high-altitude platform (HAP) are currently being researched. The network configuration under consideration includes a satellite, several HAPs, and subscribers on the ground. The WiMAX base station is positioned on the satellite and connects with the HAP via an analog RF over-laser communication (LC) link. The HAPs house a transparent transponder that converts the optic signal to a WiMAX RF signal and the reverse. The LC system consists of a laser transmitter and an optical receiver that need to be strictly aligned to achieve a line-of-sight link. However, mechanical vibration and electronic noise in the control system challenge the transmitter–receiver alignment and cause pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. In this paper, we derive the value of laser transmitter gain that can minimize the outage probability of the WiMAX link. The results indicate that the optimum value of the laser transmitter gain is not a function of the pointing error statistics.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription