Abstract

Various technologies for the implementation of a WiMAX (IEEE802.16) base station on board a high-altitude platform (HAP) are currently being researched. The network configuration under consideration includes a satellite, several HAPs, and subscribers on the ground. The WiMAX base station is positioned on the satellite and connects with the HAP via an analog RF over-laser communication (LC) link. The HAPs house a transparent transponder that converts the optic signal to a WiMAX RF signal and the reverse. The LC system consists of a laser transmitter and an optical receiver that need to be strictly aligned to achieve a line-of-sight link. However, mechanical vibration and electronic noise in the control system challenge the transmitter–receiver alignment and cause pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. In this paper, we derive the value of laser transmitter gain that can minimize the outage probability of the WiMAX link. The results indicate that the optimum value of the laser transmitter gain is not a function of the pointing error statistics.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Widiawan and R. Tafazolli, “High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications,” Wireless Personal Communications 42, 387-404 (2007).
    [CrossRef]
  2. IEEE Std 802.16eDecember 2005, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems.
  3. P. Likitthanasate, D. Grace, and P. D. Mitchell, “Coexistence performance of high altitude platform and terrestrial systems sharing a common downlink WiMAX frequency band,” Electron. Lett. Vol. 41, No. 15, pp. 858-860 (2005).
    [CrossRef]
  4. T. C. Hong, B. J. Ku, J. M. Park, D. S. Ahn, and Y. S. Jang, “Capacity of the WCDMA system using high altitude platform stations,” International Journal of Wireless Information Networks 13, 5-17 (2006).
    [CrossRef]
  5. S. Arnon, “Optical wireless communication,” in Encyclopedia of Optical Engineering, R.G.Driggers, ed., (Marcel Dekker, 2003), pp. 1866-1886 (invited submission).
  6. S. G. Lambert and W. L. Casey, Laser Communication in Space(Artech House, 1995).
  7. J. Horwath, N. Perlot, D. Giggenbach, and R. Jungling, “Numerical simulations of beam propagation through optical turbulence for high-altitude platform crosslinks,” Proc. SPIE 5338,243-252 (2004).
  8. G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
    [CrossRef]
  9. M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301-3320 (2007).
    [CrossRef]
  10. J. E. Mitchell, “Performance of OFDM at 5.8 GHz using radio over fibre link,” Electron. Lett. 40, 1353--1354 (2004).
    [CrossRef]
  11. A. Polishuk and S. Arnon, “Optimization of laser satellite communication with an optical pre-amplifier,” J. Opt. Soc. Am. A 27,1307-1315 (2004).
    [CrossRef]
  12. M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A 23, 2246-2250 (2006).
    [CrossRef]
  13. A. Goldsmith, Wireless Communications (Cambridge U. Press, 2006).
  14. S. Arnon, “Optimization of optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626-629 (2003).
    [CrossRef]
  15. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical inter-satellite communication links,” IEEE Trans. Commun. 37, 252-260 (1989).
    [CrossRef]
  16. J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high altitude platform networks: Atmospheric turbulence and downlink availability,” International Journal of Satellite Communication and Networking 25, 501-528 (2007).
    [CrossRef]
  17. H. Wu and M. Kavehrad, “Availability evaluation of ground-to-air hybrid FSO/RF links,” International Journal of Wireless Information Networks 14, 33-45 (2007).
    [CrossRef]
  18. G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
    [CrossRef]
  19. K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).
  20. P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

2007 (4)

A. K. Widiawan and R. Tafazolli, “High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications,” Wireless Personal Communications 42, 387-404 (2007).
[CrossRef]

M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301-3320 (2007).
[CrossRef]

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high altitude platform networks: Atmospheric turbulence and downlink availability,” International Journal of Satellite Communication and Networking 25, 501-528 (2007).
[CrossRef]

H. Wu and M. Kavehrad, “Availability evaluation of ground-to-air hybrid FSO/RF links,” International Journal of Wireless Information Networks 14, 33-45 (2007).
[CrossRef]

2006 (4)

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A 23, 2246-2250 (2006).
[CrossRef]

T. C. Hong, B. J. Ku, J. M. Park, D. S. Ahn, and Y. S. Jang, “Capacity of the WCDMA system using high altitude platform stations,” International Journal of Wireless Information Networks 13, 5-17 (2006).
[CrossRef]

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

2005 (1)

P. Likitthanasate, D. Grace, and P. D. Mitchell, “Coexistence performance of high altitude platform and terrestrial systems sharing a common downlink WiMAX frequency band,” Electron. Lett. Vol. 41, No. 15, pp. 858-860 (2005).
[CrossRef]

2004 (2)

J. E. Mitchell, “Performance of OFDM at 5.8 GHz using radio over fibre link,” Electron. Lett. 40, 1353--1354 (2004).
[CrossRef]

A. Polishuk and S. Arnon, “Optimization of laser satellite communication with an optical pre-amplifier,” J. Opt. Soc. Am. A 27,1307-1315 (2004).
[CrossRef]

2003 (1)

S. Arnon, “Optimization of optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626-629 (2003).
[CrossRef]

1989 (1)

C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical inter-satellite communication links,” IEEE Trans. Commun. 37, 252-260 (1989).
[CrossRef]

Aburakawa, Y.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Ahn, D. S.

T. C. Hong, B. J. Ku, J. M. Park, D. S. Ahn, and Y. S. Jang, “Capacity of the WCDMA system using high altitude platform stations,” International Journal of Wireless Information Networks 13, 5-17 (2006).
[CrossRef]

Arnon, S.

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

A. Polishuk and S. Arnon, “Optimization of laser satellite communication with an optical pre-amplifier,” J. Opt. Soc. Am. A 27,1307-1315 (2004).
[CrossRef]

S. Arnon, “Optimization of optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626-629 (2003).
[CrossRef]

S. Arnon, “Optical wireless communication,” in Encyclopedia of Optical Engineering, R.G.Driggers, ed., (Marcel Dekker, 2003), pp. 1866-1886 (invited submission).

Atias, N.

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

Bekkali, A.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

Casey, W. L.

S. G. Lambert and W. L. Casey, Laser Communication in Space(Artech House, 1995).

Chen, C.

C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical inter-satellite communication links,” IEEE Trans. Commun. 37, 252-260 (1989).
[CrossRef]

Dat, P.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

Dat, P. T.

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Gardner, C. S.

C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical inter-satellite communication links,” IEEE Trans. Commun. 37, 252-260 (1989).
[CrossRef]

George, J.

Giggenbach, D.

J. Horwath, N. Perlot, D. Giggenbach, and R. Jungling, “Numerical simulations of beam propagation through optical turbulence for high-altitude platform crosslinks,” Proc. SPIE 5338,243-252 (2004).

Goldgeier, P.

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

Goldsmith, A.

A. Goldsmith, Wireless Communications (Cambridge U. Press, 2006).

Grace, D.

P. Likitthanasate, D. Grace, and P. D. Mitchell, “Coexistence performance of high altitude platform and terrestrial systems sharing a common downlink WiMAX frequency band,” Electron. Lett. Vol. 41, No. 15, pp. 858-860 (2005).
[CrossRef]

Hauptman, Y.

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

Higashino, T.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Hong, T. C.

T. C. Hong, B. J. Ku, J. M. Park, D. S. Ahn, and Y. S. Jang, “Capacity of the WCDMA system using high altitude platform stations,” International Journal of Wireless Information Networks 13, 5-17 (2006).
[CrossRef]

Horwath, J.

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high altitude platform networks: Atmospheric turbulence and downlink availability,” International Journal of Satellite Communication and Networking 25, 501-528 (2007).
[CrossRef]

J. Horwath, N. Perlot, D. Giggenbach, and R. Jungling, “Numerical simulations of beam propagation through optical turbulence for high-altitude platform crosslinks,” Proc. SPIE 5338,243-252 (2004).

Jang, Y. S.

T. C. Hong, B. J. Ku, J. M. Park, D. S. Ahn, and Y. S. Jang, “Capacity of the WCDMA system using high altitude platform stations,” International Journal of Wireless Information Networks 13, 5-17 (2006).
[CrossRef]

Jungling, R.

J. Horwath, N. Perlot, D. Giggenbach, and R. Jungling, “Numerical simulations of beam propagation through optical turbulence for high-altitude platform crosslinks,” Proc. SPIE 5338,243-252 (2004).

Katz, G.

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

Kavehrad, M.

H. Wu and M. Kavehrad, “Availability evaluation of ground-to-air hybrid FSO/RF links,” International Journal of Wireless Information Networks 14, 33-45 (2007).
[CrossRef]

Kazaura, K.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Knapek, M.

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high altitude platform networks: Atmospheric turbulence and downlink availability,” International Journal of Satellite Communication and Networking 25, 501-528 (2007).
[CrossRef]

Kobyakov, A.

Komaki, S.

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

Ku, B. J.

T. C. Hong, B. J. Ku, J. M. Park, D. S. Ahn, and Y. S. Jang, “Capacity of the WCDMA system using high altitude platform stations,” International Journal of Wireless Information Networks 13, 5-17 (2006).
[CrossRef]

Lambert, S. G.

S. G. Lambert and W. L. Casey, Laser Communication in Space(Artech House, 1995).

Likitthanasate, P.

P. Likitthanasate, D. Grace, and P. D. Mitchell, “Coexistence performance of high altitude platform and terrestrial systems sharing a common downlink WiMAX frequency band,” Electron. Lett. Vol. 41, No. 15, pp. 858-860 (2005).
[CrossRef]

Matsumoto, M.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Mitchell, J. E.

J. E. Mitchell, “Performance of OFDM at 5.8 GHz using radio over fibre link,” Electron. Lett. 40, 1353--1354 (2004).
[CrossRef]

Mitchell, P. D.

P. Likitthanasate, D. Grace, and P. D. Mitchell, “Coexistence performance of high altitude platform and terrestrial systems sharing a common downlink WiMAX frequency band,” Electron. Lett. Vol. 41, No. 15, pp. 858-860 (2005).
[CrossRef]

Moll, F.

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high altitude platform networks: Atmospheric turbulence and downlink availability,” International Journal of Satellite Communication and Networking 25, 501-528 (2007).
[CrossRef]

Nakamura, T.

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

Park, J. M.

T. C. Hong, B. J. Ku, J. M. Park, D. S. Ahn, and Y. S. Jang, “Capacity of the WCDMA system using high altitude platform stations,” International Journal of Wireless Information Networks 13, 5-17 (2006).
[CrossRef]

Perlot, N.

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high altitude platform networks: Atmospheric turbulence and downlink availability,” International Journal of Satellite Communication and Networking 25, 501-528 (2007).
[CrossRef]

J. Horwath, N. Perlot, D. Giggenbach, and R. Jungling, “Numerical simulations of beam propagation through optical turbulence for high-altitude platform crosslinks,” Proc. SPIE 5338,243-252 (2004).

Polishuk, A.

A. Polishuk and S. Arnon, “Optimization of laser satellite communication with an optical pre-amplifier,” J. Opt. Soc. Am. A 27,1307-1315 (2004).
[CrossRef]

Sauer, M.

Shah, A.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Suzuki, T.

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

Tafazolli, R.

A. K. Widiawan and R. Tafazolli, “High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications,” Wireless Personal Communications 42, 387-404 (2007).
[CrossRef]

Takahashi, K.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Toyoshima, M.

Tsukamoto, K.

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

Wakamori, K.

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Widiawan, A. K.

A. K. Widiawan and R. Tafazolli, “High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications,” Wireless Personal Communications 42, 387-404 (2007).
[CrossRef]

Wu, H.

H. Wu and M. Kavehrad, “Availability evaluation of ground-to-air hybrid FSO/RF links,” International Journal of Wireless Information Networks 14, 33-45 (2007).
[CrossRef]

Electron. Lett. (2)

P. Likitthanasate, D. Grace, and P. D. Mitchell, “Coexistence performance of high altitude platform and terrestrial systems sharing a common downlink WiMAX frequency band,” Electron. Lett. Vol. 41, No. 15, pp. 858-860 (2005).
[CrossRef]

J. E. Mitchell, “Performance of OFDM at 5.8 GHz using radio over fibre link,” Electron. Lett. 40, 1353--1354 (2004).
[CrossRef]

IEE Proc.: Optoelectron. (2)

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

G. Katz, S. Arnon, P. Goldgeier, Y. Hauptman, and N. Atias, “Cellular over optical wireless networks,” IEE Proc.: Optoelectron. 153, 195-198 (2006).
[CrossRef]

IEEE Trans. Commun. (1)

C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical inter-satellite communication links,” IEEE Trans. Commun. 37, 252-260 (1989).
[CrossRef]

IEEE Trans. Wireless Commun. (1)

S. Arnon, “Optimization of optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626-629 (2003).
[CrossRef]

International Journal of Satellite Communication and Networking (1)

J. Horwath, N. Perlot, M. Knapek, and F. Moll, “Experimental verification of optical backhaul links for high altitude platform networks: Atmospheric turbulence and downlink availability,” International Journal of Satellite Communication and Networking 25, 501-528 (2007).
[CrossRef]

International Journal of Wireless Information Networks (2)

H. Wu and M. Kavehrad, “Availability evaluation of ground-to-air hybrid FSO/RF links,” International Journal of Wireless Information Networks 14, 33-45 (2007).
[CrossRef]

T. C. Hong, B. J. Ku, J. M. Park, D. S. Ahn, and Y. S. Jang, “Capacity of the WCDMA system using high altitude platform stations,” International Journal of Wireless Information Networks 13, 5-17 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Wireless Personal Communications (1)

A. K. Widiawan and R. Tafazolli, “High altitude platform station (HAPS): A review of new infrastructure development for future wireless communications,” Wireless Personal Communications 42, 387-404 (2007).
[CrossRef]

Other (7)

IEEE Std 802.16eDecember 2005, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems.

S. Arnon, “Optical wireless communication,” in Encyclopedia of Optical Engineering, R.G.Driggers, ed., (Marcel Dekker, 2003), pp. 1866-1886 (invited submission).

S. G. Lambert and W. L. Casey, Laser Communication in Space(Artech House, 1995).

J. Horwath, N. Perlot, D. Giggenbach, and R. Jungling, “Numerical simulations of beam propagation through optical turbulence for high-altitude platform crosslinks,” Proc. SPIE 5338,243-252 (2004).

A. Goldsmith, Wireless Communications (Cambridge U. Press, 2006).

K. Kazaura, P. Dat, A. Bekkali, A. Shah, T. Suzuki, K. Wakamori, M. Matsumoto, T. Nakamura, K. Takahashi, T. Higashino, Y. Aburakawa, K. Tsukamoto, and S. Komaki, “Experimental evaluation of a radio-on-FSO communication system for multiple RF signal transmission,” Proc. SPIE7199, 7-12 (2009).

P. T. Dat, A. Shah, K. Kazaura, K. Wakamori, T. Suzuki, K. Takahashi, M. Matsumoto, Y. Aburakawa, T. Nakamura, T. Higashino, K. Tsukamoto, and S. Komaki, “An innovative technology for ubiquitous communication using radio on FSO links,” in IEEE International Conference on Advanced Technologies for Communications 2008 (IEEE, 2008). pp. 124-127.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Satellite and high altitude platform network providing WiMAX coverage.

Fig. 2
Fig. 2

Outage probability as a function of G T - O .

Fig. 3
Fig. 3

Outage probability as a function of the distance between the HAP and the mobile user on the ground. The constellation size is equal to 64.

Fig. 4
Fig. 4

d RF P min α 2 as a function of the distance between the HAP and the mobile user on the ground. The constellation size is equal to 64.

Fig. 5
Fig. 5

Outage probability as a function of the multiplication of the optical transmitter telescope gain and the jitter variance G T - O σ θ 2 . The constellation size is equal to 64.

Fig. 6
Fig. 6

Outage probability as a function of the distance between the HAP and the mobile user on the ground. G T σ 2 is equal to 0.2.

Tables (1)

Tables Icon

Table 1 List of Practical Parameters, Results of Intermediate Calculations, and the Final Results ([1, 2, 3, 8, 11, 12])

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

f ( θ V ) = 1 2 π σ V exp ( ( θ V μ V ) 2 2 σ V 2 ) ,
f ( θ H ) = 1 2 π σ H exp ( ( θ H μ H ) 2 2 σ H 2 ) ,
θ = θ V 2 + θ H 2 .
σ θ = σ V = σ H ,
f ( θ , ϕ ) = θ σ θ 2 exp ( θ 2 + ϕ 2 2 σ θ 2 ) I 0 ( θ ϕ σ θ 2 ) ,
P R O ( θ T ) = P T η T η R L a ( λ O 4 π d O ) 2 G T O G R O L T ( θ T ) ,
L T ( θ T ) = exp ( G T O θ T 2 ) ,
P R - O ( θ T ) = G T - O α 1 exp ( G T - O θ T 2 ) ,
α 1 = G R - O P T η T η R L a ( λ O 4 π d O ) 2 .
P T R F ( θ T ) = K O RF ( P R O ( θ T ) ) 2 ,
P T - RF ( θ T ) = K O - RF ( α 1 2 G T - O 2 exp ( 2 G T - O θ T 2 ) ) .
P R RF ( θ T , d RF ) = P T RF ( θ T ) ( λ RF G l 4 π d RF ) 2 ,
P R - RF ( θ T , d RF ) = G T - O 2 α 2 d RF 2 exp ( 2 G T - O θ T 2 ) ,
α 2 = ( λ RF G l 4 π ) 2 K O RF α 1 2 .
θ T = 1 2 G T - O Ln ( P min α 2 G T - O 2 d RF 2 ) .
P outage ( P R - RF ( θ T , d RF ) < P min ) = 1 0 1 2 G T - O Ln ( P min α 2 G T - O 2 d RF 2 ) θ σ θ 2 exp ( θ 2 + ϕ 2 2 σ θ 2 ) I 0 ( θ ϕ σ θ 2 ) d θ .
f ( θ T ) = θ T σ θ 2 exp ( θ T 2 2 σ θ 2 ) .
P outage ( P R - RF ( θ T , d RF ) < P min ) = 1 0 1 2 G T - O Ln ( P min α 2 G T - O 2 d RF 2 ) θ σ θ 2 exp ( θ 2 2 σ θ 2 ) d θ ,
d RF < α 2 G T - O 2 P min .
P outage ( P R - RF ( θ T , d RF ) < P min ) = 1 0 1 4 G T - O σ θ 2 Ln ( P min α 2 G T - O 2 d RF 2 ) exp ( u ) du ,
d RF < α 2 G T - O 2 P min .
P outage ( P R - RF ( θ T , d RF ) < P min ) = ( P min α 2 G T - O 2 d RF 2 ) 1 4 G T - O σ θ 2 ,
d RF < α 2 G T - O 2 P min .
P outage ( P R - RF ( θ T , d RF ) < P min ) G T - O = ( P min α 2 G T - O 2 d RF 2 ) 1 4 G T - O σ θ 2 G T - O = 0.
P outage ( P R - RF ( θ T , d RF ) < P min ) G T - O = 1 4 G 2 T - O σ θ 2 ( P min d RF 2 α 2 G T - O 2 ) 1 4 G T - O σ θ 2 ( Ln ( P min d 2 RF α 2 G T - O 2 ) + 2 ) = 0.
G T - O * = ( P min d 2 RF α 2 exp ( 2 ) ) .
SER 4 Q ( 3 γ ¯ s M 1 ) ,
Q ( x ) = 1 2 π x exp ( v 2 2 ) d v .
γ ¯ s = P ¯ s T s N RF + N o ,
P min = n c P ¯ s N .
P min ( N RF + N O ) n c N ( M 1 ) ( Q 1 ( SER 4 ) ) 2 3 T s .
P outage ( P R - RF ( θ T , d RF ) < P min ) ( ( N RF + N O ) n c N ( M 1 ) ( Q 1 ( SER 4 ) ) 2 3 α 2 G T - O 2 d RF 2 T s ) 1 4 G T - O σ θ 2 , d RF < G T - O 2 α 2 P min .

Metrics