U. Yalcin, “Scattering from a cylindrical reflector: modified theory of physical optics solution,” J. Opt. Soc. Am. A 24, 502-506 (2007).

[CrossRef]

A. A. Nosich, Y. V. Gandel, T. Magath, and A. Altintas, “Numerical analysis and synthesis of 2-D quasioptical reflectors and beam waveguides based on an integral-equation approach with Nystrom's discretization,” J. Opt. Soc. Am. A 24, 2831-2836 (2007).

[CrossRef]

Y. Z. Umul, “Scattering of a Gaussian beam by an impedance half-plane,” J. Opt. Soc. Am. A 24, 3159-3167 (2007).

[CrossRef]

A. A. Nosich and Y. V. Gandel, “Numerical analysis of quasioptical multi-reflector antennas in 2-D with the method of discrete singularities: E-wave case,” IEEE Trans. Antennas Propag. 57, 399-406 (2007).

[CrossRef]

A. Tzoulis and T. F. Eibert, “A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects,” IEEE Trans. Antennas Propag. 53, 3358-3366 (2005).

[CrossRef]

A. Heldring, J. M. Rius, L. P. Ligthart, and A. Cardama, “Accurate numerical modeling of the TARA reflector system,” IEEE Trans. Antennas Propag. 52, 1758-1766 (2004).

[CrossRef]

T. Oguzer, A. I. Nosich, A. and Altintas, “Analysis of arbitrary conic section profile cylindrical reflector antenna, H-polarization case,” IEEE Trans. Antennas Propag. 52, 3156-3162 (2004).

[CrossRef]

H.-T. Chou, P. H. Pathak, and R. J. Burkholder, “Application of Gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas,” Proc. Inst. Electr. Eng. 150, 177-183 (2003).

C. Rieckmann, “Novel modular approach based on Gaussian beam diffraction for analysing quasi-optical multireflector antennas,” Proc. Inst. Elect. Eng. Microwaves 149, 160-167 (2002).

[CrossRef]

T. Oğuzer, A. I. Nosich, and A. Altintas, “E-polarized beam scattering by an open cylindrical PEC strip having arbitrary conical-section profile,” Microwave Opt. Technol. Lett. 31, 480-484 (2001).

[CrossRef]

S. V. Boriskina, A. I. Nosich, A. and Altintas, “Effect of the imperfect flat earth on the vertically-polarized radiation of a cylindrical reflector antenna,” IEEE Trans. Antennas Propag. 48, 285-292 (2000).

[CrossRef]

V. B. Yurchenko, A. Altintas, and A. I. Nosich, “Numerical optimization of a cylindrical reflector-in-radome antenna system,” IEEE Trans. Antennas Propag. 47, 668-673 (1999).

[CrossRef]

J. M. Bendickson, E. M. Glytsis, and T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113-130 (1999).

[CrossRef]

A. I. Nosich, “MAR in the wave-scattering and eigenvalue problems: foundations and review of solutions,” IEEE Antennas Propag. Mag. 42, 34-49 (1999).

[CrossRef]

E. G. Njoku, Y. Rahmat-Samii, J. Sercel, W. J. Wilson, and M. Moghaddam, “Evaluation of an inflatable antenna concept for microwave sensing of soil moisture and ocean salinity,” IEEE Trans. Geosci. Remote Sens. 37, 63-78 (1999).

[CrossRef]

A. I. Nosich, V. B. Yurchenko, and A. Altintas, “Numerically exact analysis of a two-dimensional variable-resistivity reflector fed by a complex point source,” IEEE Trans. Antennas Propag. 45, 1592-1601 (1997).

[CrossRef]

A. I. Nosich, Y. Okuno, and T. Shiraishi, “Scattering and absorption of E and H-polarized plane waves by a circularly curved resistive strip,” Radio Sci. 31, 1733-1742 (1996).

[CrossRef]

D. C. Jenn, M. A. Morgan, and R. J. Pogorzelski, “Characteristics of approximate numerical modeling techniques applied to resonance-sized reflectors,” Electromagnetics 15, 41-53 (1995).

[CrossRef]

T. Oğuzer, A. Altintas, and A. I. Nosich,“Accurate simulation of reflector antennas by the complex source--dual series approach,” IEEE Trans. Antennas Propag. 43, 793-802 (1995).

[CrossRef]

H. Anastassiu and P. Pathak, “High-frequency analysis of Gaussian beam scattering by a two-dimensional parabolic contour of finite width,” Radio Sci. 30, 493-503 (1995).

[CrossRef]

M. Martinez-Burdalo, A. Martin, and R. Villar, “Uniform PO and PTD solution for calculating plane wave backscattering from a finite cylindrical shell of arbitrary cross section,” IEEE Trans. Antennas Propag. 41, 1336-1339 (1993).

[CrossRef]

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets,” IEEE Trans. Antennas Propag. 35, 14-25 (1993).

M. R. Barclay and W. V. T. Rusch, “Moment-method analysis of large, axially symmetric reflector antennas using entire-domain functions,” IEEE Trans. Antennas Propag. 39, 491-496 (1991).

[CrossRef]

G. A. Suedan and E. V. Jull, “Beam diffraction by planar and parabolic reflectors,” IEEE Trans. Antennas Propag. 39, 521-527 (1991).

[CrossRef]

G. Bouchitte and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13-26 (1989).

[CrossRef]

M. Idemen and A. Büyükaksoy, “High frequency surface currents induced on a perfectly conducting cylindrical reflector,” IEEE Trans. Antennas Propag. 32, 501-507 (1984).

[CrossRef]

F. J. V. Hasselmann and L. B. Felsen, “Asymptotic analysis of parabolic reflector antennas,” IEEE Trans. Antennas Propag. 30, 677-685 (1982).

[CrossRef]

O. Bucci, G. Di Massa, and C. Savarese, “Control of reflector antennas performance by rim loading,” IEEE Trans. Antennas Propag. 29, 773-779 (1981).

[CrossRef]

O. Bucci and G. Franceschetti, “Rim loaded reflector antennas,” IEEE Trans. Antennas Propag. 28, 297-304 (1980).

[CrossRef]

H. Yokoi and H. Fukumuru, “Low sidelobes of paraboloidal antennas with microwave absorbers,” Electron. Commun. Jpn. 54-B, 34-49 (1971).

A. B. Bakushinsky, “About one numerical method of solving the Fredholm first-kind integral equations,” Comput. Math. Math. Phys. 5, 744-749 (1965).

A. A. Nosich, Y. V. Gandel, T. Magath, and A. Altintas, “Numerical analysis and synthesis of 2-D quasioptical reflectors and beam waveguides based on an integral-equation approach with Nystrom's discretization,” J. Opt. Soc. Am. A 24, 2831-2836 (2007).

[CrossRef]

T. Oğuzer, A. I. Nosich, and A. Altintas, “E-polarized beam scattering by an open cylindrical PEC strip having arbitrary conical-section profile,” Microwave Opt. Technol. Lett. 31, 480-484 (2001).

[CrossRef]

V. B. Yurchenko, A. Altintas, and A. I. Nosich, “Numerical optimization of a cylindrical reflector-in-radome antenna system,” IEEE Trans. Antennas Propag. 47, 668-673 (1999).

[CrossRef]

A. I. Nosich, V. B. Yurchenko, and A. Altintas, “Numerically exact analysis of a two-dimensional variable-resistivity reflector fed by a complex point source,” IEEE Trans. Antennas Propag. 45, 1592-1601 (1997).

[CrossRef]

T. Oğuzer, A. Altintas, and A. I. Nosich,“Accurate simulation of reflector antennas by the complex source--dual series approach,” IEEE Trans. Antennas Propag. 43, 793-802 (1995).

[CrossRef]

H. Anastassiu and P. Pathak, “High-frequency analysis of Gaussian beam scattering by a two-dimensional parabolic contour of finite width,” Radio Sci. 30, 493-503 (1995).

[CrossRef]

T. Oguzer, A. I. Nosich, A. and Altintas, “Analysis of arbitrary conic section profile cylindrical reflector antenna, H-polarization case,” IEEE Trans. Antennas Propag. 52, 3156-3162 (2004).

[CrossRef]

S. V. Boriskina, A. I. Nosich, A. and Altintas, “Effect of the imperfect flat earth on the vertically-polarized radiation of a cylindrical reflector antenna,” IEEE Trans. Antennas Propag. 48, 285-292 (2000).

[CrossRef]

A. B. Bakushinsky, “About one numerical method of solving the Fredholm first-kind integral equations,” Comput. Math. Math. Phys. 5, 744-749 (1965).

M. R. Barclay and W. V. T. Rusch, “Moment-method analysis of large, axially symmetric reflector antennas using entire-domain functions,” IEEE Trans. Antennas Propag. 39, 491-496 (1991).

[CrossRef]

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets,” IEEE Trans. Antennas Propag. 35, 14-25 (1993).

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets,” IEEE Trans. Antennas Propag. 35, 14-25 (1993).

S. V. Boriskina, A. I. Nosich, A. and Altintas, “Effect of the imperfect flat earth on the vertically-polarized radiation of a cylindrical reflector antenna,” IEEE Trans. Antennas Propag. 48, 285-292 (2000).

[CrossRef]

G. Bouchitte and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13-26 (1989).

[CrossRef]

B. Philips, M. Philippakis, G. Y. Philippou, and D. J. Brain, “Study of modeling methods for large reflector antennas,” ERA Report 96-0902, U.K., ERA Rep. 96-0902 (1996).

O. Bucci, G. Di Massa, and C. Savarese, “Control of reflector antennas performance by rim loading,” IEEE Trans. Antennas Propag. 29, 773-779 (1981).

[CrossRef]

O. Bucci and G. Franceschetti, “Rim loaded reflector antennas,” IEEE Trans. Antennas Propag. 28, 297-304 (1980).

[CrossRef]

H.-T. Chou, P. H. Pathak, and R. J. Burkholder, “Application of Gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas,” Proc. Inst. Electr. Eng. 150, 177-183 (2003).

M. Idemen and A. Büyükaksoy, “High frequency surface currents induced on a perfectly conducting cylindrical reflector,” IEEE Trans. Antennas Propag. 32, 501-507 (1984).

[CrossRef]

A. Heldring, J. M. Rius, L. P. Ligthart, and A. Cardama, “Accurate numerical modeling of the TARA reflector system,” IEEE Trans. Antennas Propag. 52, 1758-1766 (2004).

[CrossRef]

H.-T. Chou, P. H. Pathak, and R. J. Burkholder, “Application of Gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas,” Proc. Inst. Electr. Eng. 150, 177-183 (2003).

D. Colton and R. Kress, Integral Equation Method in Scattering Theory (Wiley, 1983).

O. Bucci, G. Di Massa, and C. Savarese, “Control of reflector antennas performance by rim loading,” IEEE Trans. Antennas Propag. 29, 773-779 (1981).

[CrossRef]

A. Tzoulis and T. F. Eibert, “A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects,” IEEE Trans. Antennas Propag. 53, 3358-3366 (2005).

[CrossRef]

F. J. V. Hasselmann and L. B. Felsen, “Asymptotic analysis of parabolic reflector antennas,” IEEE Trans. Antennas Propag. 30, 677-685 (1982).

[CrossRef]

O. Bucci and G. Franceschetti, “Rim loaded reflector antennas,” IEEE Trans. Antennas Propag. 28, 297-304 (1980).

[CrossRef]

H. Yokoi and H. Fukumuru, “Low sidelobes of paraboloidal antennas with microwave absorbers,” Electron. Commun. Jpn. 54-B, 34-49 (1971).

F. J. V. Hasselmann and L. B. Felsen, “Asymptotic analysis of parabolic reflector antennas,” IEEE Trans. Antennas Propag. 30, 677-685 (1982).

[CrossRef]

A. Heldring, J. M. Rius, L. P. Ligthart, and A. Cardama, “Accurate numerical modeling of the TARA reflector system,” IEEE Trans. Antennas Propag. 52, 1758-1766 (2004).

[CrossRef]

M. Idemen and A. Büyükaksoy, “High frequency surface currents induced on a perfectly conducting cylindrical reflector,” IEEE Trans. Antennas Propag. 32, 501-507 (1984).

[CrossRef]

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets,” IEEE Trans. Antennas Propag. 35, 14-25 (1993).

D. C. Jenn, M. A. Morgan, and R. J. Pogorzelski, “Characteristics of approximate numerical modeling techniques applied to resonance-sized reflectors,” Electromagnetics 15, 41-53 (1995).

[CrossRef]

G. A. Suedan and E. V. Jull, “Beam diffraction by planar and parabolic reflectors,” IEEE Trans. Antennas Propag. 39, 521-527 (1991).

[CrossRef]

D. Colton and R. Kress, Integral Equation Method in Scattering Theory (Wiley, 1983).

M. M. Lavrentyev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems in Analysis and Mathematical Physics (Moscow, Nauka Publ., 1980) (in Russian).

A. Heldring, J. M. Rius, L. P. Ligthart, and A. Cardama, “Accurate numerical modeling of the TARA reflector system,” IEEE Trans. Antennas Propag. 52, 1758-1766 (2004).

[CrossRef]

M. Martinez-Burdalo, A. Martin, and R. Villar, “Uniform PO and PTD solution for calculating plane wave backscattering from a finite cylindrical shell of arbitrary cross section,” IEEE Trans. Antennas Propag. 41, 1336-1339 (1993).

[CrossRef]

M. Martinez-Burdalo, A. Martin, and R. Villar, “Uniform PO and PTD solution for calculating plane wave backscattering from a finite cylindrical shell of arbitrary cross section,” IEEE Trans. Antennas Propag. 41, 1336-1339 (1993).

[CrossRef]

E. G. Njoku, Y. Rahmat-Samii, J. Sercel, W. J. Wilson, and M. Moghaddam, “Evaluation of an inflatable antenna concept for microwave sensing of soil moisture and ocean salinity,” IEEE Trans. Geosci. Remote Sens. 37, 63-78 (1999).

[CrossRef]

D. C. Jenn, M. A. Morgan, and R. J. Pogorzelski, “Characteristics of approximate numerical modeling techniques applied to resonance-sized reflectors,” Electromagnetics 15, 41-53 (1995).

[CrossRef]

E. G. Njoku, Y. Rahmat-Samii, J. Sercel, W. J. Wilson, and M. Moghaddam, “Evaluation of an inflatable antenna concept for microwave sensing of soil moisture and ocean salinity,” IEEE Trans. Geosci. Remote Sens. 37, 63-78 (1999).

[CrossRef]

T. Oguzer, A. I. Nosich, A. and Altintas, “Analysis of arbitrary conic section profile cylindrical reflector antenna, H-polarization case,” IEEE Trans. Antennas Propag. 52, 3156-3162 (2004).

[CrossRef]

T. Oğuzer, A. I. Nosich, and A. Altintas, “E-polarized beam scattering by an open cylindrical PEC strip having arbitrary conical-section profile,” Microwave Opt. Technol. Lett. 31, 480-484 (2001).

[CrossRef]

S. V. Boriskina, A. I. Nosich, A. and Altintas, “Effect of the imperfect flat earth on the vertically-polarized radiation of a cylindrical reflector antenna,” IEEE Trans. Antennas Propag. 48, 285-292 (2000).

[CrossRef]

A. I. Nosich, “MAR in the wave-scattering and eigenvalue problems: foundations and review of solutions,” IEEE Antennas Propag. Mag. 42, 34-49 (1999).

[CrossRef]

V. B. Yurchenko, A. Altintas, and A. I. Nosich, “Numerical optimization of a cylindrical reflector-in-radome antenna system,” IEEE Trans. Antennas Propag. 47, 668-673 (1999).

[CrossRef]

A. I. Nosich, V. B. Yurchenko, and A. Altintas, “Numerically exact analysis of a two-dimensional variable-resistivity reflector fed by a complex point source,” IEEE Trans. Antennas Propag. 45, 1592-1601 (1997).

[CrossRef]

A. I. Nosich, Y. Okuno, and T. Shiraishi, “Scattering and absorption of E and H-polarized plane waves by a circularly curved resistive strip,” Radio Sci. 31, 1733-1742 (1996).

[CrossRef]

T. Oğuzer, A. Altintas, and A. I. Nosich,“Accurate simulation of reflector antennas by the complex source--dual series approach,” IEEE Trans. Antennas Propag. 43, 793-802 (1995).

[CrossRef]

A. I. Nosich, “Green's function--dual series approach in wave scattering from combined resonant scatterers,” in M.Hashimoto, M.Idemen and O.A.Tretyakov, eds., Analytical and Numerical Methods in Electromagnetic Wave Theory (Tokyo: Science House, 1993), pp. 419-469.

T. Oguzer, A. I. Nosich, A. and Altintas, “Analysis of arbitrary conic section profile cylindrical reflector antenna, H-polarization case,” IEEE Trans. Antennas Propag. 52, 3156-3162 (2004).

[CrossRef]

T. Oğuzer, A. I. Nosich, and A. Altintas, “E-polarized beam scattering by an open cylindrical PEC strip having arbitrary conical-section profile,” Microwave Opt. Technol. Lett. 31, 480-484 (2001).

[CrossRef]

T. Oğuzer, A. Altintas, and A. I. Nosich,“Accurate simulation of reflector antennas by the complex source--dual series approach,” IEEE Trans. Antennas Propag. 43, 793-802 (1995).

[CrossRef]

A. I. Nosich, Y. Okuno, and T. Shiraishi, “Scattering and absorption of E and H-polarized plane waves by a circularly curved resistive strip,” Radio Sci. 31, 1733-1742 (1996).

[CrossRef]

H. Anastassiu and P. Pathak, “High-frequency analysis of Gaussian beam scattering by a two-dimensional parabolic contour of finite width,” Radio Sci. 30, 493-503 (1995).

[CrossRef]

H.-T. Chou, P. H. Pathak, and R. J. Burkholder, “Application of Gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas,” Proc. Inst. Electr. Eng. 150, 177-183 (2003).

G. Bouchitte and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13-26 (1989).

[CrossRef]

B. Philips, M. Philippakis, G. Y. Philippou, and D. J. Brain, “Study of modeling methods for large reflector antennas,” ERA Report 96-0902, U.K., ERA Rep. 96-0902 (1996).

B. Philips, M. Philippakis, G. Y. Philippou, and D. J. Brain, “Study of modeling methods for large reflector antennas,” ERA Report 96-0902, U.K., ERA Rep. 96-0902 (1996).

B. Philips, M. Philippakis, G. Y. Philippou, and D. J. Brain, “Study of modeling methods for large reflector antennas,” ERA Report 96-0902, U.K., ERA Rep. 96-0902 (1996).

D. C. Jenn, M. A. Morgan, and R. J. Pogorzelski, “Characteristics of approximate numerical modeling techniques applied to resonance-sized reflectors,” Electromagnetics 15, 41-53 (1995).

[CrossRef]

E. G. Njoku, Y. Rahmat-Samii, J. Sercel, W. J. Wilson, and M. Moghaddam, “Evaluation of an inflatable antenna concept for microwave sensing of soil moisture and ocean salinity,” IEEE Trans. Geosci. Remote Sens. 37, 63-78 (1999).

[CrossRef]

C. Rieckmann, “Novel modular approach based on Gaussian beam diffraction for analysing quasi-optical multireflector antennas,” Proc. Inst. Elect. Eng. Microwaves 149, 160-167 (2002).

[CrossRef]

A. Heldring, J. M. Rius, L. P. Ligthart, and A. Cardama, “Accurate numerical modeling of the TARA reflector system,” IEEE Trans. Antennas Propag. 52, 1758-1766 (2004).

[CrossRef]

M. M. Lavrentyev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems in Analysis and Mathematical Physics (Moscow, Nauka Publ., 1980) (in Russian).

M. R. Barclay and W. V. T. Rusch, “Moment-method analysis of large, axially symmetric reflector antennas using entire-domain functions,” IEEE Trans. Antennas Propag. 39, 491-496 (1991).

[CrossRef]

O. Bucci, G. Di Massa, and C. Savarese, “Control of reflector antennas performance by rim loading,” IEEE Trans. Antennas Propag. 29, 773-779 (1981).

[CrossRef]

T. B. A. Senior, “Some problems involving imperfect half-planes,” in P.L. E.Uslenghi, ed., Electromagnetic Scattering (Academic, 1978), pp. 185-219.

E. G. Njoku, Y. Rahmat-Samii, J. Sercel, W. J. Wilson, and M. Moghaddam, “Evaluation of an inflatable antenna concept for microwave sensing of soil moisture and ocean salinity,” IEEE Trans. Geosci. Remote Sens. 37, 63-78 (1999).

[CrossRef]

A. I. Nosich, Y. Okuno, and T. Shiraishi, “Scattering and absorption of E and H-polarized plane waves by a circularly curved resistive strip,” Radio Sci. 31, 1733-1742 (1996).

[CrossRef]

M. M. Lavrentyev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems in Analysis and Mathematical Physics (Moscow, Nauka Publ., 1980) (in Russian).

G. A. Suedan and E. V. Jull, “Beam diffraction by planar and parabolic reflectors,” IEEE Trans. Antennas Propag. 39, 521-527 (1991).

[CrossRef]

A. Tzoulis and T. F. Eibert, “A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects,” IEEE Trans. Antennas Propag. 53, 3358-3366 (2005).

[CrossRef]

M. Martinez-Burdalo, A. Martin, and R. Villar, “Uniform PO and PTD solution for calculating plane wave backscattering from a finite cylindrical shell of arbitrary cross section,” IEEE Trans. Antennas Propag. 41, 1336-1339 (1993).

[CrossRef]

E. G. Njoku, Y. Rahmat-Samii, J. Sercel, W. J. Wilson, and M. Moghaddam, “Evaluation of an inflatable antenna concept for microwave sensing of soil moisture and ocean salinity,” IEEE Trans. Geosci. Remote Sens. 37, 63-78 (1999).

[CrossRef]

H. Yokoi and H. Fukumuru, “Low sidelobes of paraboloidal antennas with microwave absorbers,” Electron. Commun. Jpn. 54-B, 34-49 (1971).

V. B. Yurchenko, A. Altintas, and A. I. Nosich, “Numerical optimization of a cylindrical reflector-in-radome antenna system,” IEEE Trans. Antennas Propag. 47, 668-673 (1999).

[CrossRef]

A. I. Nosich, V. B. Yurchenko, and A. Altintas, “Numerically exact analysis of a two-dimensional variable-resistivity reflector fed by a complex point source,” IEEE Trans. Antennas Propag. 45, 1592-1601 (1997).

[CrossRef]

A. B. Bakushinsky, “About one numerical method of solving the Fredholm first-kind integral equations,” Comput. Math. Math. Phys. 5, 744-749 (1965).

D. C. Jenn, M. A. Morgan, and R. J. Pogorzelski, “Characteristics of approximate numerical modeling techniques applied to resonance-sized reflectors,” Electromagnetics 15, 41-53 (1995).

[CrossRef]

H. Yokoi and H. Fukumuru, “Low sidelobes of paraboloidal antennas with microwave absorbers,” Electron. Commun. Jpn. 54-B, 34-49 (1971).

A. I. Nosich, “MAR in the wave-scattering and eigenvalue problems: foundations and review of solutions,” IEEE Antennas Propag. Mag. 42, 34-49 (1999).

[CrossRef]

A. Tzoulis and T. F. Eibert, “A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects,” IEEE Trans. Antennas Propag. 53, 3358-3366 (2005).

[CrossRef]

M. Idemen and A. Büyükaksoy, “High frequency surface currents induced on a perfectly conducting cylindrical reflector,” IEEE Trans. Antennas Propag. 32, 501-507 (1984).

[CrossRef]

M. R. Barclay and W. V. T. Rusch, “Moment-method analysis of large, axially symmetric reflector antennas using entire-domain functions,” IEEE Trans. Antennas Propag. 39, 491-496 (1991).

[CrossRef]

O. Bucci and G. Franceschetti, “Rim loaded reflector antennas,” IEEE Trans. Antennas Propag. 28, 297-304 (1980).

[CrossRef]

O. Bucci, G. Di Massa, and C. Savarese, “Control of reflector antennas performance by rim loading,” IEEE Trans. Antennas Propag. 29, 773-779 (1981).

[CrossRef]

A. Heldring, J. M. Rius, L. P. Ligthart, and A. Cardama, “Accurate numerical modeling of the TARA reflector system,” IEEE Trans. Antennas Propag. 52, 1758-1766 (2004).

[CrossRef]

T. Oguzer, A. I. Nosich, A. and Altintas, “Analysis of arbitrary conic section profile cylindrical reflector antenna, H-polarization case,” IEEE Trans. Antennas Propag. 52, 3156-3162 (2004).

[CrossRef]

F. J. V. Hasselmann and L. B. Felsen, “Asymptotic analysis of parabolic reflector antennas,” IEEE Trans. Antennas Propag. 30, 677-685 (1982).

[CrossRef]

G. A. Suedan and E. V. Jull, “Beam diffraction by planar and parabolic reflectors,” IEEE Trans. Antennas Propag. 39, 521-527 (1991).

[CrossRef]

M. Martinez-Burdalo, A. Martin, and R. Villar, “Uniform PO and PTD solution for calculating plane wave backscattering from a finite cylindrical shell of arbitrary cross section,” IEEE Trans. Antennas Propag. 41, 1336-1339 (1993).

[CrossRef]

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets,” IEEE Trans. Antennas Propag. 35, 14-25 (1993).

T. Oğuzer, A. Altintas, and A. I. Nosich,“Accurate simulation of reflector antennas by the complex source--dual series approach,” IEEE Trans. Antennas Propag. 43, 793-802 (1995).

[CrossRef]

V. B. Yurchenko, A. Altintas, and A. I. Nosich, “Numerical optimization of a cylindrical reflector-in-radome antenna system,” IEEE Trans. Antennas Propag. 47, 668-673 (1999).

[CrossRef]

S. V. Boriskina, A. I. Nosich, A. and Altintas, “Effect of the imperfect flat earth on the vertically-polarized radiation of a cylindrical reflector antenna,” IEEE Trans. Antennas Propag. 48, 285-292 (2000).

[CrossRef]

A. A. Nosich and Y. V. Gandel, “Numerical analysis of quasioptical multi-reflector antennas in 2-D with the method of discrete singularities: E-wave case,” IEEE Trans. Antennas Propag. 57, 399-406 (2007).

[CrossRef]

A. I. Nosich, V. B. Yurchenko, and A. Altintas, “Numerically exact analysis of a two-dimensional variable-resistivity reflector fed by a complex point source,” IEEE Trans. Antennas Propag. 45, 1592-1601 (1997).

[CrossRef]

E. G. Njoku, Y. Rahmat-Samii, J. Sercel, W. J. Wilson, and M. Moghaddam, “Evaluation of an inflatable antenna concept for microwave sensing of soil moisture and ocean salinity,” IEEE Trans. Geosci. Remote Sens. 37, 63-78 (1999).

[CrossRef]

J. M. Bendickson, E. M. Glytsis, and T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113-130 (1999).

[CrossRef]

U. Yalcin, “Scattering from a cylindrical reflector: modified theory of physical optics solution,” J. Opt. Soc. Am. A 24, 502-506 (2007).

[CrossRef]

A. A. Nosich, Y. V. Gandel, T. Magath, and A. Altintas, “Numerical analysis and synthesis of 2-D quasioptical reflectors and beam waveguides based on an integral-equation approach with Nystrom's discretization,” J. Opt. Soc. Am. A 24, 2831-2836 (2007).

[CrossRef]

Y. Z. Umul, “Scattering of a Gaussian beam by an impedance half-plane,” J. Opt. Soc. Am. A 24, 3159-3167 (2007).

[CrossRef]

Y. Z. Umul, “Scattering of a line source by a cylindrical parabolic impedance surface,” J. Opt. Soc. Am. A 25, 1652-1659 (2008).

[CrossRef]

T. Oğuzer, A. I. Nosich, and A. Altintas, “E-polarized beam scattering by an open cylindrical PEC strip having arbitrary conical-section profile,” Microwave Opt. Technol. Lett. 31, 480-484 (2001).

[CrossRef]

C. Rieckmann, “Novel modular approach based on Gaussian beam diffraction for analysing quasi-optical multireflector antennas,” Proc. Inst. Elect. Eng. Microwaves 149, 160-167 (2002).

[CrossRef]

H.-T. Chou, P. H. Pathak, and R. J. Burkholder, “Application of Gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas,” Proc. Inst. Electr. Eng. 150, 177-183 (2003).

H. Anastassiu and P. Pathak, “High-frequency analysis of Gaussian beam scattering by a two-dimensional parabolic contour of finite width,” Radio Sci. 30, 493-503 (1995).

[CrossRef]

A. I. Nosich, Y. Okuno, and T. Shiraishi, “Scattering and absorption of E and H-polarized plane waves by a circularly curved resistive strip,” Radio Sci. 31, 1733-1742 (1996).

[CrossRef]

G. Bouchitte and R. Petit, “On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen,” Radio Sci. 24, 13-26 (1989).

[CrossRef]

M. M. Lavrentyev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems in Analysis and Mathematical Physics (Moscow, Nauka Publ., 1980) (in Russian).

T. B. A. Senior, “Some problems involving imperfect half-planes,” in P.L. E.Uslenghi, ed., Electromagnetic Scattering (Academic, 1978), pp. 185-219.

D. Colton and R. Kress, Integral Equation Method in Scattering Theory (Wiley, 1983).

B. Philips, M. Philippakis, G. Y. Philippou, and D. J. Brain, “Study of modeling methods for large reflector antennas,” ERA Report 96-0902, U.K., ERA Rep. 96-0902 (1996).

A. I. Nosich, “Green's function--dual series approach in wave scattering from combined resonant scatterers,” in M.Hashimoto, M.Idemen and O.A.Tretyakov, eds., Analytical and Numerical Methods in Electromagnetic Wave Theory (Tokyo: Science House, 1993), pp. 419-469.