Abstract

This work deals with the efficient and accurate modeling of fluorescence in the context of stochastic Monte Carlo methods for which we propose a novel multiscale method. As in other approaches of this category, the transport theory is employed to describe the physics. The new framework was successfully applied for a quantitative assessment of halftone reflectance measurements with three different devices. It could be demonstrated that the described method is faster than classical Monte Carlo by multiple orders of magnitude, and that it is capable of correctly handling the geometrical device differences. It is also shown that optical dot gain is accurately predicted for the whole ink coverage range.

© 2009 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription