Abstract

Diffuse optical tomography (DOT) retrieves the spatially distributed optical characteristics of a medium from external measurements. Recovering the parameters of interest involves solving a nonlinear and highly ill-posed inverse problem. This paper examines the possibility of regularizing DOT via the introduction of a priori information from alternative high-resolution anatomical modalities, using the information theory concepts of mutual information (MI) and joint entropy (JE). Such functionals evaluate the similarity between the reconstructed optical image and the prior image while bypassing the multimodality barrier manifested as the incommensurate relation between the gray value representations of corresponding anatomical features in the two modalities. By introducing structural information, we aim to improve the spatial resolution and quantitative accuracy of the solution. We provide a thorough explanation of the theory from an imaging perspective, accompanied by preliminary results using numerical simulations. In addition we compare the performance of MI and JE. Finally, we have adopted a method for fast marginal entropy evaluation and optimization by modifying the objective function and extending it to the JE case. We demonstrate its use on an image reconstruction framework and show significant computational savings.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of discrete imaging models and iterative image reconstruction in differential X-ray phase-contrast tomography

Qiaofeng Xu, Emil Y. Sidky, Xiaochuan Pan, Marco Stampanoni, Peter Modregger, and Mark A. Anastasio
Opt. Express 20(10) 10724-10749 (2012)

High resolution image acquisition from magnetic resonance and computed tomography scans using the curvelet fusion algorithm with inverse interpolation techniques

Fatma E. Ali, Ibrahim M. El-Dokany, Abdelfattah A. Saad, Waleed Al-Nuaimy, and Fathi E. Abd El-Samie
Appl. Opt. 49(1) 114-125 (2010)

Characteristic functionals in imaging and image-quality assessment: tutorial

Eric Clarkson and Harrison H. Barrett
J. Opt. Soc. Am. A 33(8) 1464-1475 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription