Abstract

In the fovea we measured the orientation and directional characteristics of photoreceptors with an optical technique in a group of 29 subjects. At 6deg eccentricity, we determined the direction of the normal to the inner limiting membrane (ILM) by analyzing light reflected specularly by the ILM. We found a strong correlation between the orientation of photoreceptor axes and the direction of the normal to the ILM. Therefore, we cannot answer the question of the mechanism of photoreceptor alignment without taking into account the direction of the normal to the underlying retinal pigment epithelium, in addition to phototropic and apodization processes. For a wavelength of 532nm, the mean value of the directionality factor ρ was 0.212mm2 (SD: 0.026mm2) when measured at the fovea (2deg sample field). We look for reasons likely to explain the discrepancy between ρ values given by different optical methods.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” in Excerpta Medica International Congress Series (Excerpta Medica, 1965), Vol. 125, pp. 171-181 .
  2. G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485-494 (1986).
    [CrossRef] [PubMed]
  3. G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the fundus in vivo,” Vision Res. 26, 495-500 (1986).
    [CrossRef] [PubMed]
  4. J.-M. Gorrand and F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Visual Sci. 31, 425 (1990).
  5. J.-M. Gorrand and F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999-1010 (1995).
    [CrossRef] [PubMed]
  6. P. J. de Lint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243-248 (1997).
    [CrossRef]
  7. S. A. Burns, S. Wu, F. C. Delori, and A. E. Elsner, “Direct measurement of human cone photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329-2338 (1995).
    [CrossRef]
  8. N. P. A. Zagers, J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone photoreceptor directionality,” Appl. Opt. 41, 4686-4696 (2002).
    [CrossRef] [PubMed]
  9. S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, and F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual System, Vol. I of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), 160-163 (1992).
  10. S. A. Burns, S. Wu, J. C. He, and A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033-2040 (1997).
    [CrossRef]
  11. S. Marcos, S. A. Burns, and J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012-2022 (1998).
    [CrossRef]
  12. S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995-1004 (1999).
    [CrossRef]
  13. J. C. He, S. Marcos, and S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16, 2363-2369 (1999).
    [CrossRef]
  14. S. Marcos and S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40, 2437-2447 (2000).
    [CrossRef] [PubMed]
  15. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404-412 (2002).
    [CrossRef]
  16. N. P. A. Zagers, T. T. J. M. Berendschot, and D. van Norren, “Wavelength dependence of reflectometric cone photoreceptor directionality,” J. Opt. Soc. Am. A 20, 18-23 (2003).
    [CrossRef]
  17. J. van de Kraats and D. van Norren, “Directional and non-directional spectral reflection from the human fovea,” J. Biomed. Opt. 13, 024010 (2008).
    [CrossRef] [PubMed]
  18. J.-M. Gorrand and F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473-491 (1997).
    [CrossRef]
  19. N. Doble, S. Choi, and D. Williams, “Implications of infrared images of the living human cone mosaic for models of fundus reflectance,” Invest. Ophthalmol. Visual Sci. 45, E-Abstract 2790 (2004).
  20. B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22, 2318-2328 (2005).
    [CrossRef]
  21. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express 16, 6486-6501 (2008).
    [CrossRef] [PubMed]
  22. J. M. Enoch and D. G. Birch, “Inferred positive phototropic activity in human photoreceptors,” Philos. Trans. R. Soc. London, Ser. B 291, 323-351 (1981).
    [CrossRef] [PubMed]
  23. “American National Standards for safe use of lasers,” in ANSI 136 1-1993 (Laser Institute of America, Orlando, Fla., 1993).
  24. W. A. H. Rushton and G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617-631 (1968).
    [CrossRef] [PubMed]
  25. J.-M. Gorrand and F. C. Delori, “Reflectance and curvature of the inner limiting membrane at the foveola,” J. Opt. Soc. Am. A 16, 1229-1237 (1999).
    [CrossRef]
  26. J. M. Enoch, J. van Loo, and E. Okun, “Realignment of photoreceptors disturbed in orientation secondary to retinal detachment,” Invest. Ophthalmol. Visual Sci. 12, 849-853 (1973).
  27. R. A. Applegate and A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Visual Sci. 21, 869-872 (1981).
  28. H. S. Smallman, D. I. A. MacLeod, and P. Doyle, “Realignment of cones after cataract removal,” Nature 412, 604-605 (2001).
    [CrossRef] [PubMed]
  29. M. S. Eckmiller, “Defective cone photoreceptor cytoskeleton, alignment, feedback, and energetics can lead to energy depletion in macular degeneration,” Prog. Retin Eye Res. 23, 495-522 (2004).
    [CrossRef] [PubMed]
  30. L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 10.9 (2007).
    [CrossRef]
  31. B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24, 597-607 (2007).
    [CrossRef]

2008 (2)

2007 (2)

B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24, 597-607 (2007).
[CrossRef]

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 10.9 (2007).
[CrossRef]

2005 (1)

2004 (2)

M. S. Eckmiller, “Defective cone photoreceptor cytoskeleton, alignment, feedback, and energetics can lead to energy depletion in macular degeneration,” Prog. Retin Eye Res. 23, 495-522 (2004).
[CrossRef] [PubMed]

N. Doble, S. Choi, and D. Williams, “Implications of infrared images of the living human cone mosaic for models of fundus reflectance,” Invest. Ophthalmol. Visual Sci. 45, E-Abstract 2790 (2004).

2003 (1)

2002 (2)

2001 (1)

H. S. Smallman, D. I. A. MacLeod, and P. Doyle, “Realignment of cones after cataract removal,” Nature 412, 604-605 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Marcos and S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40, 2437-2447 (2000).
[CrossRef] [PubMed]

1999 (3)

1998 (1)

1997 (3)

S. A. Burns, S. Wu, J. C. He, and A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033-2040 (1997).
[CrossRef]

P. J. de Lint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243-248 (1997).
[CrossRef]

J.-M. Gorrand and F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473-491 (1997).
[CrossRef]

1995 (2)

J.-M. Gorrand and F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999-1010 (1995).
[CrossRef] [PubMed]

S. A. Burns, S. Wu, F. C. Delori, and A. E. Elsner, “Direct measurement of human cone photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329-2338 (1995).
[CrossRef]

1990 (1)

J.-M. Gorrand and F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Visual Sci. 31, 425 (1990).

1986 (2)

G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485-494 (1986).
[CrossRef] [PubMed]

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the fundus in vivo,” Vision Res. 26, 495-500 (1986).
[CrossRef] [PubMed]

1981 (2)

J. M. Enoch and D. G. Birch, “Inferred positive phototropic activity in human photoreceptors,” Philos. Trans. R. Soc. London, Ser. B 291, 323-351 (1981).
[CrossRef] [PubMed]

R. A. Applegate and A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Visual Sci. 21, 869-872 (1981).

1973 (1)

J. M. Enoch, J. van Loo, and E. Okun, “Realignment of photoreceptors disturbed in orientation secondary to retinal detachment,” Invest. Ophthalmol. Visual Sci. 12, 849-853 (1973).

1968 (1)

W. A. H. Rushton and G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617-631 (1968).
[CrossRef] [PubMed]

Applegate, R. A.

R. A. Applegate and A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Visual Sci. 21, 869-872 (1981).

Artal, P.

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 10.9 (2007).
[CrossRef]

B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22, 2318-2328 (2005).
[CrossRef]

Berendschot, T. T. J. M.

Birch, D. G.

J. M. Enoch and D. G. Birch, “Inferred positive phototropic activity in human photoreceptors,” Philos. Trans. R. Soc. London, Ser. B 291, 323-351 (1981).
[CrossRef] [PubMed]

Bonds, A. B.

R. A. Applegate and A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Visual Sci. 21, 869-872 (1981).

Burns, S. A.

Cense, B.

Chen, L.

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 10.9 (2007).
[CrossRef]

Choi, S.

N. Doble, S. Choi, and D. Williams, “Implications of infrared images of the living human cone mosaic for models of fundus reflectance,” Invest. Ophthalmol. Visual Sci. 45, E-Abstract 2790 (2004).

de Lint, P. J.

P. J. de Lint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243-248 (1997).
[CrossRef]

Delori, F. C.

J.-M. Gorrand and F. C. Delori, “Reflectance and curvature of the inner limiting membrane at the foveola,” J. Opt. Soc. Am. A 16, 1229-1237 (1999).
[CrossRef]

J.-M. Gorrand and F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473-491 (1997).
[CrossRef]

S. A. Burns, S. Wu, F. C. Delori, and A. E. Elsner, “Direct measurement of human cone photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329-2338 (1995).
[CrossRef]

J.-M. Gorrand and F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999-1010 (1995).
[CrossRef] [PubMed]

J.-M. Gorrand and F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Visual Sci. 31, 425 (1990).

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, and F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual System, Vol. I of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), 160-163 (1992).

Doble, N.

N. Doble, S. Choi, and D. Williams, “Implications of infrared images of the living human cone mosaic for models of fundus reflectance,” Invest. Ophthalmol. Visual Sci. 45, E-Abstract 2790 (2004).

Doyle, P.

H. S. Smallman, D. I. A. MacLeod, and P. Doyle, “Realignment of cones after cataract removal,” Nature 412, 604-605 (2001).
[CrossRef] [PubMed]

Eckmiller, M. S.

M. S. Eckmiller, “Defective cone photoreceptor cytoskeleton, alignment, feedback, and energetics can lead to energy depletion in macular degeneration,” Prog. Retin Eye Res. 23, 495-522 (2004).
[CrossRef] [PubMed]

Elsner, A. E.

S. A. Burns, S. Wu, J. C. He, and A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033-2040 (1997).
[CrossRef]

S. A. Burns, S. Wu, F. C. Delori, and A. E. Elsner, “Direct measurement of human cone photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329-2338 (1995).
[CrossRef]

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, and F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual System, Vol. I of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), 160-163 (1992).

Enoch, J. M.

J. M. Enoch and D. G. Birch, “Inferred positive phototropic activity in human photoreceptors,” Philos. Trans. R. Soc. London, Ser. B 291, 323-351 (1981).
[CrossRef] [PubMed]

J. M. Enoch, J. van Loo, and E. Okun, “Realignment of photoreceptors disturbed in orientation secondary to retinal detachment,” Invest. Ophthalmol. Visual Sci. 12, 849-853 (1973).

Gao, W.

Gorrand, J.-M.

J.-M. Gorrand and F. C. Delori, “Reflectance and curvature of the inner limiting membrane at the foveola,” J. Opt. Soc. Am. A 16, 1229-1237 (1999).
[CrossRef]

J.-M. Gorrand and F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473-491 (1997).
[CrossRef]

J.-M. Gorrand and F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999-1010 (1995).
[CrossRef] [PubMed]

J.-M. Gorrand and F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Visual Sci. 31, 425 (1990).

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, and F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual System, Vol. I of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), 160-163 (1992).

Gutierrez, D.

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 10.9 (2007).
[CrossRef]

He, J. C.

Henry, G. H.

W. A. H. Rushton and G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617-631 (1968).
[CrossRef] [PubMed]

Iglesias, I.

Jonnal, R. S.

Krauskopf, J.

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” in Excerpta Medica International Congress Series (Excerpta Medica, 1965), Vol. 125, pp. 171-181 .

Kreitz, M. R.

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, and F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual System, Vol. I of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), 160-163 (1992).

MacLeod, D. I. A.

H. S. Smallman, D. I. A. MacLeod, and P. Doyle, “Realignment of cones after cataract removal,” Nature 412, 604-605 (2001).
[CrossRef] [PubMed]

Marcos, S.

Miller, D. T.

Okun, E.

J. M. Enoch, J. van Loo, and E. Okun, “Realignment of photoreceptors disturbed in orientation secondary to retinal detachment,” Invest. Ophthalmol. Visual Sci. 12, 849-853 (1973).

Roorda, A.

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404-412 (2002).
[CrossRef]

Rushton, W. A. H.

W. A. H. Rushton and G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617-631 (1968).
[CrossRef] [PubMed]

Smallman, H. S.

H. S. Smallman, D. I. A. MacLeod, and P. Doyle, “Realignment of cones after cataract removal,” Nature 412, 604-605 (2001).
[CrossRef] [PubMed]

van Blokland, G. J.

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the fundus in vivo,” Vision Res. 26, 495-500 (1986).
[CrossRef] [PubMed]

G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485-494 (1986).
[CrossRef] [PubMed]

van de Kraats, J.

van Loo, J.

J. M. Enoch, J. van Loo, and E. Okun, “Realignment of photoreceptors disturbed in orientation secondary to retinal detachment,” Invest. Ophthalmol. Visual Sci. 12, 849-853 (1973).

van Norren, D.

J. van de Kraats and D. van Norren, “Directional and non-directional spectral reflection from the human fovea,” J. Biomed. Opt. 13, 024010 (2008).
[CrossRef] [PubMed]

N. P. A. Zagers, T. T. J. M. Berendschot, and D. van Norren, “Wavelength dependence of reflectometric cone photoreceptor directionality,” J. Opt. Soc. Am. A 20, 18-23 (2003).
[CrossRef]

N. P. A. Zagers, J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone photoreceptor directionality,” Appl. Opt. 41, 4686-4696 (2002).
[CrossRef] [PubMed]

P. J. de Lint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243-248 (1997).
[CrossRef]

G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485-494 (1986).
[CrossRef] [PubMed]

Vohnsen, B.

Williams, D.

N. Doble, S. Choi, and D. Williams, “Implications of infrared images of the living human cone mosaic for models of fundus reflectance,” Invest. Ophthalmol. Visual Sci. 45, E-Abstract 2790 (2004).

Williams, D. R.

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 10.9 (2007).
[CrossRef]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404-412 (2002).
[CrossRef]

Wu, S.

Zagers, N. P. A.

Zhang, Y.

Appl. Opt. (1)

Invest. Ophthalmol. Visual Sci. (4)

J.-M. Gorrand and F. C. Delori, “A method for assessing the photoreceptor directionality,” Invest. Ophthalmol. Visual Sci. 31, 425 (1990).

N. Doble, S. Choi, and D. Williams, “Implications of infrared images of the living human cone mosaic for models of fundus reflectance,” Invest. Ophthalmol. Visual Sci. 45, E-Abstract 2790 (2004).

J. M. Enoch, J. van Loo, and E. Okun, “Realignment of photoreceptors disturbed in orientation secondary to retinal detachment,” Invest. Ophthalmol. Visual Sci. 12, 849-853 (1973).

R. A. Applegate and A. B. Bonds, “Induced movement of receptor alignment toward a new pupillary aperture,” Invest. Ophthalmol. Visual Sci. 21, 869-872 (1981).

J. Biomed. Opt. (1)

J. van de Kraats and D. van Norren, “Directional and non-directional spectral reflection from the human fovea,” J. Biomed. Opt. 13, 024010 (2008).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

J.-M. Gorrand and F. C. Delori, “A model for assessment of cone directionality,” J. Mod. Opt. 44, 473-491 (1997).
[CrossRef]

J. Opt. Soc. Am. A (9)

N. P. A. Zagers, T. T. J. M. Berendschot, and D. van Norren, “Wavelength dependence of reflectometric cone photoreceptor directionality,” J. Opt. Soc. Am. A 20, 18-23 (2003).
[CrossRef]

B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22, 2318-2328 (2005).
[CrossRef]

B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24, 597-607 (2007).
[CrossRef]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995-1004 (1999).
[CrossRef]

J.-M. Gorrand and F. C. Delori, “Reflectance and curvature of the inner limiting membrane at the foveola,” J. Opt. Soc. Am. A 16, 1229-1237 (1999).
[CrossRef]

J. C. He, S. Marcos, and S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16, 2363-2369 (1999).
[CrossRef]

S. Marcos, S. A. Burns, and J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012-2022 (1998).
[CrossRef]

S. A. Burns, S. Wu, J. C. He, and A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A 14, 2033-2040 (1997).
[CrossRef]

S. A. Burns, S. Wu, F. C. Delori, and A. E. Elsner, “Direct measurement of human cone photoreceptor alignment,” J. Opt. Soc. Am. A 12, 2329-2338 (1995).
[CrossRef]

J. Vision (2)

L. Chen, P. Artal, D. Gutierrez, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 10.9 (2007).
[CrossRef]

A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vision 2, 404-412 (2002).
[CrossRef]

Nature (1)

H. S. Smallman, D. I. A. MacLeod, and P. Doyle, “Realignment of cones after cataract removal,” Nature 412, 604-605 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Philos. Trans. R. Soc. London, Ser. B (1)

J. M. Enoch and D. G. Birch, “Inferred positive phototropic activity in human photoreceptors,” Philos. Trans. R. Soc. London, Ser. B 291, 323-351 (1981).
[CrossRef] [PubMed]

Prog. Retin Eye Res. (1)

M. S. Eckmiller, “Defective cone photoreceptor cytoskeleton, alignment, feedback, and energetics can lead to energy depletion in macular degeneration,” Prog. Retin Eye Res. 23, 495-522 (2004).
[CrossRef] [PubMed]

Vision Res. (6)

W. A. H. Rushton and G. H. Henry, “Bleaching and regeneration of cone pigments in man,” Vision Res. 8, 617-631 (1968).
[CrossRef] [PubMed]

G. J. van Blokland and D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485-494 (1986).
[CrossRef] [PubMed]

G. J. van Blokland, “Directionality and alignment of the foveal receptors, assessed with light scattered from the fundus in vivo,” Vision Res. 26, 495-500 (1986).
[CrossRef] [PubMed]

J.-M. Gorrand and F. C. Delori, “A reflectometric technique for assessing photoreceptor alignment,” Vision Res. 35, 999-1010 (1995).
[CrossRef] [PubMed]

P. J. de Lint, T. T. J. M. Berendschot, and D. van Norren, “Local photoreceptor alignment measured with a scanning laser ophthalmoscope,” Vision Res. 37, 243-248 (1997).
[CrossRef]

S. Marcos and S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40, 2437-2447 (2000).
[CrossRef] [PubMed]

Other (3)

S. A. Burns, A. E. Elsner, J.-M. Gorrand, M. R. Kreitz, and F. C. Delori, “Comparison of reflectometric and psychophysical measures of cone orientation,” in Noninvasive Assessment of the Visual System, Vol. I of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), 160-163 (1992).

J. Krauskopf, “Some experiments with a photoelectric ophthalmoscope,” in Excerpta Medica International Congress Series (Excerpta Medica, 1965), Vol. 125, pp. 171-181 .

“American National Standards for safe use of lasers,” in ANSI 136 1-1993 (Laser Institute of America, Orlando, Fla., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Directional component. Light is guided backward along the photoreceptor and radiated from the myoid toward the eye’s pupil. A diffuse component fills the pupil uniformly. O, center of the eye’s pupil; I, point where the photoreceptor axis intersects the pupil; J, center of the entrance pupil.

Fig. 2
Fig. 2

Specular reflection of the ILM. We assume that the ILM is close to a spherical mirror inside the retinal area A. I 1 , point where the line normal to the ILM intersects the eye’s pupil. The beam coming from J illuminates the retinal area A and is reflected by the ILM. This mirror forms an image J 1 that is conjugate to J. The beam goes through the eye’s pupil around the point J 2 .

Fig. 3
Fig. 3

Pupillary images obtained at 6 deg T retinal eccentricity (Subject 18). The point J is positioned successively at (a) 2 mm N, (b) 0, and (c) 2 mm T in the eye’s pupil. The corresponding positions of J 2 are consistent with a specular reflection since the point I 1 remains at the same location while J crosses the eye’s pupil. The small point close to the pupil center is the fourth Purkinje image. The two points on the left side of the pupil in (b) are ghosts due to double reflections by the beam splitter.

Fig. 4
Fig. 4

Optics of the instrument. The fixation beam (red He–Ne laser) is combined with the measuring beam (Xe lamp) through beam splitter T 1 . The reflected light is separated from the incident light by beam splitter T 2 . P f , P i , circular diaphragms conjugate to the eye’s pupil; R i , R r , and R f , circular diaphragms conjugate to the retina; M 1 and M 2 , mirrors; L 1 to L 4 and L 1 to L 4 , objectives; Sh, shutter; EP 1 , eyepiece.

Fig. 5
Fig. 5

Examples of pairs of pupil images from the same subjects. (Left) Intensity distribution at the pupil plane of light radiated from foveal cones. ×, position of the maximum of the intensity distribution in the pupil. The bright point adjacent to × is the entrance pupil around J. The smaller point is the fourth Purkinje image. (Right) Distribution of light reflected specularly by the ILM. The position of the entrance pupil (around J) is indicated by the arrow. The point at which the line normal to the ILM intersects the pupil (middle of the segment JJ 2 ) is represented by the + symbol.

Fig. 6
Fig. 6

Comparison of the coordinates x 0 and x 1 (27 subjects). x 0 and x 1 are the horizontal coordinates of points I (orientation of photoreceptors) and I 1 (direction of the normal to the ILM), respectively. Each point represents the average of three measurements ( SD < 0.1 mm ) . The solid line represents a linear fit to the data. N, nasal side of the pupil; T, temporal side of the pupil.

Fig. 7
Fig. 7

Comparison of the coordinates y 0 and y 1 (27 subjects). y 0 and y 1 are the vertical coordinates of points I (orientation of photoreceptors) and I 1 (direction of the normal to the ILM), respectively. Each point represents the average of three measurements ( SD < 0.1 mm ) . The solid line represents a linear fit to the data. I, inferior side of the pupil; S, superior side of the pupil.

Fig. 8
Fig. 8

Directionality factor ρ as a function of the ratio κ in the fovea (25 subjects). The ratio κ provides the total flux carried by the directional component (compared with the diffuse component). Each point represents the average of three measurements ( SD < 0.01 mm 2 ) . The solid line represents a linear fit to the data. Sample field, 2 deg . Wavelength, 532 nm .

Fig. 9
Fig. 9

The wave coming from J excites the modes HE 11 that are guided through the photoreceptor. Light reflected by the PTOS and the EOSJ is guided backward and radiated to the pupil.

Tables (1)

Tables Icon

Table 1 Comparison of the Values of the Directionality Factor ρ Derived from Two Different Fitting Procedures a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Φ ( x , y ) = C + D × 10 ρ [ ( x x 0 ) 2 + ( y y 0 ) 2 ] .
F nd = 1 π R τ 2 f 2 F inc A p ,
F dir = 1 π R D C τ 2 f 2 F inc 10 ρ ( x 2 + y 2 ) d x d y .
F dir F nd = π ln 1 0 κ A p , with κ = 1 C D ρ , and ln the Napierian logarithm .
x 0 = 0.774 + 0.511 x 1 .
y 0 = 0.054 + 0.825 y 1 .
ρ = 0.1432 + 0.0034 κ ( ρ in mm 2 , κ in mm 2 ) .

Metrics