Abstract

A retroreflective screen composed of miniature corner cube reflectors (CCRs) or microbeads redirects an incident ray in the reverse direction. Recently the retroreflective screen was utilized as a key element in head-mounted projection displays (HMPDs). Most prior efforts in developing the HMPD technology have been focused on optimizing the optical design of the projection optics, neglecting the imaging artifacts caused by the screen. Few efforts have been attempted to analyze and evaluate the overall image quality of the HMPD system with the presence of a retroreflective screen. This paper first applies a ray-tracing method to examine the imaging properties of a single CCR. Through the combination of both the geometrical imaging effect and the diffraction effect, the imaging properties of a CCR-based retroreflective screen are analyzed and characterized. Based on these analytical results, the paper further evaluates how the imaging artifacts of a retroreflective screen degrade the spatial resolution of an HMPD system and limit the tolerance range of the distance from an HMPD user to the screen. Finally, a discussion is employed to illustrate potential techniques in minimizing the image quality degradation through the optimization of the corner cube size in a retroreflective screen.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Haschberger and V. Tank, “Optimization of a Michelson interferometer with a rotating retroreflector in optical design, spectral resolution, and optical throughput,” J. Opt. Soc. Am. A 10, 2338-2345 (1993).
    [CrossRef]
  2. A. Minato and N. Sugimoto, “Design of a four-element, hollow-cube corner retroreflector for satellites by use of a genetic algorithm,” Appl. Opt. 37, 438-442 (1998).
    [CrossRef]
  3. K. S. J. Pister, D. S. Gunawan, and L. Lin, “Micromachined corner cube reflectors as a communication link,” Sens. Actuators, A A46-47, 580-583 (1995).
  4. G. Zhou, A. Alfrey, and L. W. Casperson, “Modes of a laser resonator with a retroreflecting corner cube mirror,” Appl. Opt. 21, 1670-1674 (1982).
    [CrossRef] [PubMed]
  5. 3M: http://www.mmm.com.
  6. J. Liu and R. M. A. Azzam, “Polarization properties of cornercube retroreflectors: theory and experiment,” Appl. Opt. 36, 1553-1559 (1997).
    [CrossRef] [PubMed]
  7. D. C. O'Brien, G. E. Faulkner, and D. J. Edwards, “Optical properties of a retroreflecting sheet,” Appl. Opt. 38, 4137-4144 (1999).
    [CrossRef]
  8. S. E. Segre and V. Zanza, “Mueller calculus of polarization change in the cube-corner retroreflector,” J. Opt. Soc. Am. A 20, 1804-1811 (2003).
    [CrossRef]
  9. H. Eckhardt, “Simple model of corner reflector phenomena,” Appl. Opt. 10, 1559-1566 (1971).
    [CrossRef] [PubMed]
  10. H. Kim and B. Lee, “Optimal design of retroreflection corner-cube sheets by geometric optics analysis,” Opt. Eng. (Bellingham) 46, 094002 (2007).
    [CrossRef]
  11. H. H. Barrett and S. F. Jacobs, “Retroreflective arrays as approximate phase conjugators,” Opt. Lett. 4, 190-192 (1979).
    [CrossRef] [PubMed]
  12. D. A. Palmer, “Retroreflective materials and optical imaging,” Appl. Opt. 24, 1413-1414 (1985).
    [CrossRef] [PubMed]
  13. R. Fisher, “Head-mounted projection display system featuring beam splitter and method of making same,” U.S. Patent 5,572,229 (November 5, 1996).
  14. J. Fergason, “Optical system for head mounted display using a retro-reflector and method of displaying an image,” U.S. patent 5,621,572 (April 15, 1997).
  15. R. Kijima and T. Ojika, “Transition between virtual environment and workstation environment with projective head-mounted display,” in Proceedings of IEEE VR 1997 (IEEE, 1997), pp. 130-137.
  16. H. Hua, A. Girardot, C. Gao, and J. P. Rolland, “Engineering of head-mounted projective displays,” Appl. Opt. 39, 3814-3824 (2000).
    [CrossRef]
  17. H. Hua, C. Gao, F. Biocca, and J. P. Rolland, “An ultra-light and compact design and implementation of head-mounted projective displays,” in Proceedings of IEEE-VR 2001 (IEEE, 2001) pp. 175-182.
  18. H. Hua, Y. Ha, and J. P. Rolland, “Design of an ultra-light and compact projection lens,” Appl. Opt. 42, 1-12 (2003).
    [CrossRef]
  19. H. Hua, L. Brown, and C. Gao, “A new collaborative infrastructure: SCAPE,” in Proceedings of IEEE VR 2003 (IEEE, 2003), pp. 171-179.
  20. H. Hua, L. Brown, and C. Gao, “SCAPE: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graphics Appl. 24, 66-75 (2004).
    [CrossRef]
  21. J. P. Rolland, F. Biocca, F. Hamza-Lup, Y. Ha, and R. Martins, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence: Teleoperators and Virtual Environments 14, 528-549 (2005).
    [CrossRef]
  22. H. Hua, C. Gao, “Design of a bright polarized head-mounted projection display” Appl. Opt. 46, 2600-2610 (2007).
    [CrossRef] [PubMed]
  23. R. Zhang and H. Hua, “Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays,” Appl. Opt. 47, 2888-2896 (2008).
    [CrossRef] [PubMed]
  24. D. Poizat and J. P. Rolland, “Use of retro-reflective sheets in optical system design,” Tech. Rep. TR98-006 (University of Central Florida, 1998).
  25. H. Hua, C. Gao, and J. P. Rolland, “Study of the imaging properties of retro-reflective materials used in head-mounted projective displays,” Proc. SPIE 4711, 194-201 (2002).
    [CrossRef]
  26. Optical Research Associates, http://www.opticalres.com.
  27. R. Chang, D. Currie, and C. Alley, “Far-field diffraction pattern for corner reflectors with complex reflection coefficients,” J. Opt. Soc. Am. 61, 431-438 (1970).
    [CrossRef]
  28. T. Sugihara, T. Miyasato, and R. Nakatsu, “An evaluation of visual fatigue in 3D displays: focusing on the mismatching of convergence and accommodation,” IEICE Trans. Electron. E82(10) (1999).

2008 (1)

2007 (2)

H. Hua, C. Gao, “Design of a bright polarized head-mounted projection display” Appl. Opt. 46, 2600-2610 (2007).
[CrossRef] [PubMed]

H. Kim and B. Lee, “Optimal design of retroreflection corner-cube sheets by geometric optics analysis,” Opt. Eng. (Bellingham) 46, 094002 (2007).
[CrossRef]

2005 (1)

J. P. Rolland, F. Biocca, F. Hamza-Lup, Y. Ha, and R. Martins, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence: Teleoperators and Virtual Environments 14, 528-549 (2005).
[CrossRef]

2004 (1)

H. Hua, L. Brown, and C. Gao, “SCAPE: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graphics Appl. 24, 66-75 (2004).
[CrossRef]

2003 (2)

H. Hua, Y. Ha, and J. P. Rolland, “Design of an ultra-light and compact projection lens,” Appl. Opt. 42, 1-12 (2003).
[CrossRef]

S. E. Segre and V. Zanza, “Mueller calculus of polarization change in the cube-corner retroreflector,” J. Opt. Soc. Am. A 20, 1804-1811 (2003).
[CrossRef]

2002 (1)

H. Hua, C. Gao, and J. P. Rolland, “Study of the imaging properties of retro-reflective materials used in head-mounted projective displays,” Proc. SPIE 4711, 194-201 (2002).
[CrossRef]

2000 (1)

1999 (2)

D. C. O'Brien, G. E. Faulkner, and D. J. Edwards, “Optical properties of a retroreflecting sheet,” Appl. Opt. 38, 4137-4144 (1999).
[CrossRef]

T. Sugihara, T. Miyasato, and R. Nakatsu, “An evaluation of visual fatigue in 3D displays: focusing on the mismatching of convergence and accommodation,” IEICE Trans. Electron. E82(10) (1999).

1998 (1)

1997 (1)

1995 (1)

K. S. J. Pister, D. S. Gunawan, and L. Lin, “Micromachined corner cube reflectors as a communication link,” Sens. Actuators, A A46-47, 580-583 (1995).

1993 (1)

1985 (1)

1982 (1)

1979 (1)

1971 (1)

1970 (1)

Alfrey, A.

Alley, C.

Azzam, R. M. A.

Barrett, H. H.

Biocca, F.

J. P. Rolland, F. Biocca, F. Hamza-Lup, Y. Ha, and R. Martins, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence: Teleoperators and Virtual Environments 14, 528-549 (2005).
[CrossRef]

H. Hua, C. Gao, F. Biocca, and J. P. Rolland, “An ultra-light and compact design and implementation of head-mounted projective displays,” in Proceedings of IEEE-VR 2001 (IEEE, 2001) pp. 175-182.

Brown, L.

H. Hua, L. Brown, and C. Gao, “SCAPE: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graphics Appl. 24, 66-75 (2004).
[CrossRef]

H. Hua, L. Brown, and C. Gao, “A new collaborative infrastructure: SCAPE,” in Proceedings of IEEE VR 2003 (IEEE, 2003), pp. 171-179.

Casperson, L. W.

Chang, R.

Currie, D.

Eckhardt, H.

Edwards, D. J.

Faulkner, G. E.

Fergason, J.

J. Fergason, “Optical system for head mounted display using a retro-reflector and method of displaying an image,” U.S. patent 5,621,572 (April 15, 1997).

Fisher, R.

R. Fisher, “Head-mounted projection display system featuring beam splitter and method of making same,” U.S. Patent 5,572,229 (November 5, 1996).

Gao, C.

H. Hua, C. Gao, “Design of a bright polarized head-mounted projection display” Appl. Opt. 46, 2600-2610 (2007).
[CrossRef] [PubMed]

H. Hua, L. Brown, and C. Gao, “SCAPE: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graphics Appl. 24, 66-75 (2004).
[CrossRef]

H. Hua, C. Gao, and J. P. Rolland, “Study of the imaging properties of retro-reflective materials used in head-mounted projective displays,” Proc. SPIE 4711, 194-201 (2002).
[CrossRef]

H. Hua, A. Girardot, C. Gao, and J. P. Rolland, “Engineering of head-mounted projective displays,” Appl. Opt. 39, 3814-3824 (2000).
[CrossRef]

H. Hua, C. Gao, F. Biocca, and J. P. Rolland, “An ultra-light and compact design and implementation of head-mounted projective displays,” in Proceedings of IEEE-VR 2001 (IEEE, 2001) pp. 175-182.

H. Hua, L. Brown, and C. Gao, “A new collaborative infrastructure: SCAPE,” in Proceedings of IEEE VR 2003 (IEEE, 2003), pp. 171-179.

Girardot, A.

Gunawan, D. S.

K. S. J. Pister, D. S. Gunawan, and L. Lin, “Micromachined corner cube reflectors as a communication link,” Sens. Actuators, A A46-47, 580-583 (1995).

Ha, Y.

J. P. Rolland, F. Biocca, F. Hamza-Lup, Y. Ha, and R. Martins, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence: Teleoperators and Virtual Environments 14, 528-549 (2005).
[CrossRef]

H. Hua, Y. Ha, and J. P. Rolland, “Design of an ultra-light and compact projection lens,” Appl. Opt. 42, 1-12 (2003).
[CrossRef]

Hamza-Lup, F.

J. P. Rolland, F. Biocca, F. Hamza-Lup, Y. Ha, and R. Martins, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence: Teleoperators and Virtual Environments 14, 528-549 (2005).
[CrossRef]

Haschberger, P.

Hua, H.

R. Zhang and H. Hua, “Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays,” Appl. Opt. 47, 2888-2896 (2008).
[CrossRef] [PubMed]

H. Hua, C. Gao, “Design of a bright polarized head-mounted projection display” Appl. Opt. 46, 2600-2610 (2007).
[CrossRef] [PubMed]

H. Hua, L. Brown, and C. Gao, “SCAPE: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graphics Appl. 24, 66-75 (2004).
[CrossRef]

H. Hua, Y. Ha, and J. P. Rolland, “Design of an ultra-light and compact projection lens,” Appl. Opt. 42, 1-12 (2003).
[CrossRef]

H. Hua, C. Gao, and J. P. Rolland, “Study of the imaging properties of retro-reflective materials used in head-mounted projective displays,” Proc. SPIE 4711, 194-201 (2002).
[CrossRef]

H. Hua, A. Girardot, C. Gao, and J. P. Rolland, “Engineering of head-mounted projective displays,” Appl. Opt. 39, 3814-3824 (2000).
[CrossRef]

H. Hua, C. Gao, F. Biocca, and J. P. Rolland, “An ultra-light and compact design and implementation of head-mounted projective displays,” in Proceedings of IEEE-VR 2001 (IEEE, 2001) pp. 175-182.

H. Hua, L. Brown, and C. Gao, “A new collaborative infrastructure: SCAPE,” in Proceedings of IEEE VR 2003 (IEEE, 2003), pp. 171-179.

Jacobs, S. F.

Kijima, R.

R. Kijima and T. Ojika, “Transition between virtual environment and workstation environment with projective head-mounted display,” in Proceedings of IEEE VR 1997 (IEEE, 1997), pp. 130-137.

Kim, H.

H. Kim and B. Lee, “Optimal design of retroreflection corner-cube sheets by geometric optics analysis,” Opt. Eng. (Bellingham) 46, 094002 (2007).
[CrossRef]

Lee, B.

H. Kim and B. Lee, “Optimal design of retroreflection corner-cube sheets by geometric optics analysis,” Opt. Eng. (Bellingham) 46, 094002 (2007).
[CrossRef]

Lin, L.

K. S. J. Pister, D. S. Gunawan, and L. Lin, “Micromachined corner cube reflectors as a communication link,” Sens. Actuators, A A46-47, 580-583 (1995).

Liu, J.

Martins, R.

J. P. Rolland, F. Biocca, F. Hamza-Lup, Y. Ha, and R. Martins, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence: Teleoperators and Virtual Environments 14, 528-549 (2005).
[CrossRef]

Minato, A.

Miyasato, T.

T. Sugihara, T. Miyasato, and R. Nakatsu, “An evaluation of visual fatigue in 3D displays: focusing on the mismatching of convergence and accommodation,” IEICE Trans. Electron. E82(10) (1999).

Nakatsu, R.

T. Sugihara, T. Miyasato, and R. Nakatsu, “An evaluation of visual fatigue in 3D displays: focusing on the mismatching of convergence and accommodation,” IEICE Trans. Electron. E82(10) (1999).

O'Brien, D. C.

Ojika, T.

R. Kijima and T. Ojika, “Transition between virtual environment and workstation environment with projective head-mounted display,” in Proceedings of IEEE VR 1997 (IEEE, 1997), pp. 130-137.

Palmer, D. A.

Pister, K. S. J.

K. S. J. Pister, D. S. Gunawan, and L. Lin, “Micromachined corner cube reflectors as a communication link,” Sens. Actuators, A A46-47, 580-583 (1995).

Poizat, D.

D. Poizat and J. P. Rolland, “Use of retro-reflective sheets in optical system design,” Tech. Rep. TR98-006 (University of Central Florida, 1998).

Rolland, J. P.

J. P. Rolland, F. Biocca, F. Hamza-Lup, Y. Ha, and R. Martins, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence: Teleoperators and Virtual Environments 14, 528-549 (2005).
[CrossRef]

H. Hua, Y. Ha, and J. P. Rolland, “Design of an ultra-light and compact projection lens,” Appl. Opt. 42, 1-12 (2003).
[CrossRef]

H. Hua, C. Gao, and J. P. Rolland, “Study of the imaging properties of retro-reflective materials used in head-mounted projective displays,” Proc. SPIE 4711, 194-201 (2002).
[CrossRef]

H. Hua, A. Girardot, C. Gao, and J. P. Rolland, “Engineering of head-mounted projective displays,” Appl. Opt. 39, 3814-3824 (2000).
[CrossRef]

D. Poizat and J. P. Rolland, “Use of retro-reflective sheets in optical system design,” Tech. Rep. TR98-006 (University of Central Florida, 1998).

H. Hua, C. Gao, F. Biocca, and J. P. Rolland, “An ultra-light and compact design and implementation of head-mounted projective displays,” in Proceedings of IEEE-VR 2001 (IEEE, 2001) pp. 175-182.

Segre, S. E.

Sugihara, T.

T. Sugihara, T. Miyasato, and R. Nakatsu, “An evaluation of visual fatigue in 3D displays: focusing on the mismatching of convergence and accommodation,” IEICE Trans. Electron. E82(10) (1999).

Sugimoto, N.

Tank, V.

Zanza, V.

Zhang, R.

Zhou, G.

Appl. Opt. (10)

H. Hua, Y. Ha, and J. P. Rolland, “Design of an ultra-light and compact projection lens,” Appl. Opt. 42, 1-12 (2003).
[CrossRef]

G. Zhou, A. Alfrey, and L. W. Casperson, “Modes of a laser resonator with a retroreflecting corner cube mirror,” Appl. Opt. 21, 1670-1674 (1982).
[CrossRef] [PubMed]

D. A. Palmer, “Retroreflective materials and optical imaging,” Appl. Opt. 24, 1413-1414 (1985).
[CrossRef] [PubMed]

J. Liu and R. M. A. Azzam, “Polarization properties of cornercube retroreflectors: theory and experiment,” Appl. Opt. 36, 1553-1559 (1997).
[CrossRef] [PubMed]

D. C. O'Brien, G. E. Faulkner, and D. J. Edwards, “Optical properties of a retroreflecting sheet,” Appl. Opt. 38, 4137-4144 (1999).
[CrossRef]

H. Hua, A. Girardot, C. Gao, and J. P. Rolland, “Engineering of head-mounted projective displays,” Appl. Opt. 39, 3814-3824 (2000).
[CrossRef]

A. Minato and N. Sugimoto, “Design of a four-element, hollow-cube corner retroreflector for satellites by use of a genetic algorithm,” Appl. Opt. 37, 438-442 (1998).
[CrossRef]

H. Eckhardt, “Simple model of corner reflector phenomena,” Appl. Opt. 10, 1559-1566 (1971).
[CrossRef] [PubMed]

H. Hua, C. Gao, “Design of a bright polarized head-mounted projection display” Appl. Opt. 46, 2600-2610 (2007).
[CrossRef] [PubMed]

R. Zhang and H. Hua, “Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays,” Appl. Opt. 47, 2888-2896 (2008).
[CrossRef] [PubMed]

IEEE Comput. Graphics Appl. (1)

H. Hua, L. Brown, and C. Gao, “SCAPE: supporting stereoscopic collaboration in augmented and projective environments,” IEEE Comput. Graphics Appl. 24, 66-75 (2004).
[CrossRef]

IEICE Trans. Electron. (1)

T. Sugihara, T. Miyasato, and R. Nakatsu, “An evaluation of visual fatigue in 3D displays: focusing on the mismatching of convergence and accommodation,” IEICE Trans. Electron. E82(10) (1999).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Eng. (Bellingham) (1)

H. Kim and B. Lee, “Optimal design of retroreflection corner-cube sheets by geometric optics analysis,” Opt. Eng. (Bellingham) 46, 094002 (2007).
[CrossRef]

Opt. Lett. (1)

Presence: Teleoperators and Virtual Environments (1)

J. P. Rolland, F. Biocca, F. Hamza-Lup, Y. Ha, and R. Martins, “Development of head-mounted projection displays for distributed, collaborative, augmented reality applications,” Presence: Teleoperators and Virtual Environments 14, 528-549 (2005).
[CrossRef]

Proc. SPIE (1)

H. Hua, C. Gao, and J. P. Rolland, “Study of the imaging properties of retro-reflective materials used in head-mounted projective displays,” Proc. SPIE 4711, 194-201 (2002).
[CrossRef]

Sens. Actuators, A (1)

K. S. J. Pister, D. S. Gunawan, and L. Lin, “Micromachined corner cube reflectors as a communication link,” Sens. Actuators, A A46-47, 580-583 (1995).

Other (8)

3M: http://www.mmm.com.

R. Fisher, “Head-mounted projection display system featuring beam splitter and method of making same,” U.S. Patent 5,572,229 (November 5, 1996).

J. Fergason, “Optical system for head mounted display using a retro-reflector and method of displaying an image,” U.S. patent 5,621,572 (April 15, 1997).

R. Kijima and T. Ojika, “Transition between virtual environment and workstation environment with projective head-mounted display,” in Proceedings of IEEE VR 1997 (IEEE, 1997), pp. 130-137.

H. Hua, C. Gao, F. Biocca, and J. P. Rolland, “An ultra-light and compact design and implementation of head-mounted projective displays,” in Proceedings of IEEE-VR 2001 (IEEE, 2001) pp. 175-182.

D. Poizat and J. P. Rolland, “Use of retro-reflective sheets in optical system design,” Tech. Rep. TR98-006 (University of Central Florida, 1998).

H. Hua, L. Brown, and C. Gao, “A new collaborative infrastructure: SCAPE,” in Proceedings of IEEE VR 2003 (IEEE, 2003), pp. 171-179.

Optical Research Associates, http://www.opticalres.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic design of an HMPD system.

Fig. 2
Fig. 2

Ray tracing in a corner cube.

Fig. 3
Fig. 3

Illustration of geometrical imaging effect through a CCR array in a 2D plane.

Fig. 4
Fig. 4

2D illustration of the ray bundle retroreflected by an individual CCR.

Fig. 5
Fig. 5

Effective aperture of a CCR for normal incident light.

Fig. 6
Fig. 6

(a) Simulation setup in LightTools, (b) microscopic image of CCR array.

Fig. 7
Fig. 7

Simulation results: the geometrical effect of a retroreflective screen.

Fig. 8
Fig. 8

Diffraction pattern of a CCR for normal incident light.

Fig. 9
Fig. 9

Imaging effect of a CCR array, combining the geometrical and diffraction effects.

Fig. 10
Fig. 10

Simplified view of the HMPD.

Fig. 11
Fig. 11

Blur as a function of a and d when (a) z i = 0.75 m , (b) z i = 2 m , (c) z i = 4 m .

Fig. 12
Fig. 12

Allowable movement range as a function (a) of the projected image distance and (b) the corner cube size.

Tables (1)

Tables Icon

Table 1 Ray-Tracing Results for Six Possible Optical Paths

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

HG = HS + SG = LF + LE = a eff U ( φ + β 1 ) + a eff L ( φ β 2 ) ,
D geo - blur = max { a eff U ( O 0 , 1 , , n ) } + max { a eff L ( O 0 , 1 , , n ) } ,
D geo - blur = 2 a eff ( φ ) ,
D diff = 4.08 λ d a .
D blur = D geo + D diff = 1.212 a + 4.08 λ d a ,
η blur = 2 arctan ( D blur 2 z i ) = 2 arctan ( 0.606 a z i + 2.04 λ d a z i ) ,
η min = 2 arctan ( 1.212 a opt z i ) , a opt = 3.37 λ d .
η 0 = 2 arctan ( D 2 f ) = 2 arctan ( D 2 z i ) ,
z i a z i tan ( η 0 2 ) 0.606 a 2 2.04 λ z user = z i ± d z i + a z i tan ( η 0 2 ) 0.606 a 2 2.04 λ .
d tolerance = ± a z i tan ( η 0 2 ) 0.606 a 2 2.04 λ .
a opt = tan ( η 0 2 ) × z i 2 × 0.606 , d max ̱ tolerance = ± z i 2 × tan 2 ( η 0 2 ) 4 × 0.606 × 2.04 λ .

Metrics