Abstract

We study multiple scattering of partially polarized light using the theory of radiative transport. In particular, we study the light that exits a half-space composed of a uniform absorbing and scattering medium due to an unpolarized, isotropic, and continuous planar source. We assume that Rayleigh scattering applies. Using only angular integrals of the two orthogonal polarization components of the intensity exiting the half-space, we recover the depth and the strength of this source in two stages. First, we recover the depth of the source through the solution of a one-dimensional nonlinear equation. Then we recover the strength of the source through the solution of a linear least-squares problem. This method is limited to sources located at depths on the order of a transport mean-free path or less. Beyond that depth, these data do not contain sufficient polarization diversity for this inversion method to work. In addition, we show that this method is sensitive to instrument noise. We present numerical results to validate these results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (98)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription