Abstract

The depolarization property of a biomedium with anisotropic biomolecule optical scattering is investigated theoretically. By using a simple ellipsoid model of a single biomolecule, the scattering fields and Mueller matrices are derived from fundamental electromagnetism theory. The biomedium is modeled as a system of uncorrelated anisotropic molecules. On the basis of a statistical model of anisotropic molecular distribution, the scattering depolarization of the biomedium is investigated. Simulated results of the molecular shape and orientation dependent single scattering depolarization D1 and the double scattering depolarization D2 are reported. The D2 contribution is found to be more important for higher-density scattering media. The depolarizations of the forward single and double scattering of a model cell membrane are simulated and discussed. The fitting to a single tetra-methylrhodamine-labeled lipid molecule’s anisotropic imaging experiment has demonstrated that large depolarization arises for the membrane to which the fluorescence emitting molecule is attached. This theory can provide a simulation analysis tool for investigating the scattering polarization/depolarization effect and the photon density wave transport property of a highly scattering biomedium.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scattering polarization by anisotropic biomolecules

Tsu-Wei Nee, Soe-Mie F. Nee, De-Ming Yang, and Yu-Shan Huang
J. Opt. Soc. Am. A 25(5) 1030-1038 (2008)

Decomposition of Jones and Mueller matrices in terms of four basic polarization responses

Soe-Mie F. Nee
J. Opt. Soc. Am. A 31(11) 2518-2528 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription