Abstract

The retrieval of the backscatter cross section in lidar data is of great interest in remote sensing. For the numerical calculation of the backscatter cross section, a deconvolution has to be performed; its determination is therefore an ill-posed problem. Most of the common techniques, such as the well-known method of Gaussian decomposition, make implicit assumptions on both the emitted laser pulse and the scatterers. It is well understood that a land surface is quite complicated, and in many cases it cannot be composed of pure Gaussian function combinations. Therefore the assumption of Gaussian decomposition of waveforms may be invalid sometimes. In such cases an inversion method might be a natural choice. We propose a regularizing method with a posteriori choice of the regularizing parameter for solving the problem. The proposed method can alleviate difficulties in numerical computation and can suppress the propagation of noise. Numerical evidence is given of the success of the approach presented for recovering the backscatter cross section in lidar data.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Range determination for generating point clouds from airborne small footprint LiDAR waveforms

Yuchu Qin, Tuong Thuy Vu, Yifang Ban, and Zheng Niu
Opt. Express 20(23) 25935-25947 (2012)

Expectation maximization and the retrieval of the atmospheric extinction coefficients by inversion of Raman lidar data

Sara Garbarino, Alberto Sorrentino, Anna Maria Massone, Alessia Sannino, Antonella Boselli, Xuan Wang, Nicola Spinelli, and Michele Piana
Opt. Express 24(19) 21497-21511 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription