Abstract

An approximate analytical expression is derived for the two-dimensional incoherent optical transfer function (OTF) of an imaging system invariant to second-order aberrations. The system broadband behavior resulting from a third-order phase mask in its pupil plane is analyzed by using the two-dimensional stationary phase method. This approach does not require mathematical separability of the pupil function and can be applied to any pupil shape. The OTF is found to be a well-defined and smooth function at all nonzero spatial frequencies when the phase mask function includes third-order mixed terms in the pupil coordinates.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859-1866 (1995).
    [CrossRef] [PubMed]
  2. J. van der Gracht, E. R. Dowski, Jr., M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919-921 (1996).
    [CrossRef] [PubMed]
  3. S. Bradburn, W. T. Cathey, and E. R. Dowski, “Realization of focus invariance in optical-digital systems with wave-front coding,” Appl. Opt. 36, 9157-9166 (1997).
    [CrossRef]
  4. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080-6092 (2002).
    [CrossRef] [PubMed]
  5. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709-2721 (2004).
    [CrossRef] [PubMed]
  6. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spheric aberrations,” Opt. Lett. 28, 771-773 (2003).
    [CrossRef] [PubMed]
  7. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67-74 (2004).
    [CrossRef]
  8. A. Castro and J. Ojeda-Castaneda, “Asymmetric phase masks for extended depth of field,” Appl. Opt. 43, 3474-3479 (2004).
    [CrossRef] [PubMed]
  9. S. Mezouari, G. Muyo, and A. R. Harvey, “Circularly symmetric phase filters for control of primary third-order aberrations: coma and astigmatism,” J. Opt. Soc. Am. A 23, 1058-1062 (2006).
    [CrossRef]
  10. H. Lei, H. Feng, X. Tao, and Zh. Xu, “Imaging characteristics of a wavefront coding system with off-axis aberrations,” Appl. Opt. 45, 7255-7263 (2006).
    [CrossRef] [PubMed]
  11. M. Somayaji and M. P. Christensen, “Frequency analysis of the wave-front coding odd-symmetric quadratic phase mask,” Appl. Opt. 46, 216-226 (2007).
    [CrossRef] [PubMed]
  12. M. Somayaji and M. P. Christensen, “Enhancing form factor and light collection of multiplex imaging systems by using a cubic phase mask,” Appl. Opt. 45, 2911-2923 (2006).
    [CrossRef] [PubMed]
  13. G. Muyo and A. R. Harvey, “Decomposition of the optical transfer function: wavefront coding imaging systems,” Opt. Lett. 30, 2715-2717 (2005).
    [CrossRef] [PubMed]
  14. S. Bagheri, P. E. X. Silveria, and D. P. Farias, “Analytical optimal solution of the extension of the depth of filed using cubic-phase wavefront coding. Part I. Reduced-complexity approximate representation of the modulation transfer function,” J. Opt. Soc. Am. A 25, 1051-1063 (2008).
    [CrossRef]
  15. M. Fedoruk, Analysis I. Asymptotic Methods in Analysis, Vol. 13 of Encyclopaedia of Mathematical Science (Springer, 1989).
  16. M. V. Fedoruk, Saddle Point Method (Nauka, 1977) (in Russian).
  17. R. Wong, Asymptotic Approximations of Integrals (Academic, 1989).
  18. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91-103 (1955).
  19. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  20. F. R. Gantmacher, The Theory of Matrices (Chelsea, 1959), Vol. 1.
  21. D. Kaminski, “Exponentially improved stationary phase approximations for double integrals,” Methods Appl. Anal. 1, 44-56 (1994).
  22. M. Frigo and S. G. Johnson, “FFTW,” http://www.fftw.org.

2008 (1)

2007 (1)

2006 (3)

2005 (1)

2004 (3)

2003 (1)

2002 (1)

1997 (1)

1996 (1)

1995 (1)

1994 (1)

D. Kaminski, “Exponentially improved stationary phase approximations for double integrals,” Methods Appl. Anal. 1, 44-56 (1994).

1955 (1)

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91-103 (1955).

Bagheri, S.

Bradburn, S.

Castro, A.

Cathey, W. T.

Christensen, M. P.

Deaver, D. M.

Dowski, E. R.

Farias, D. P.

Fedoruk, M.

M. Fedoruk, Analysis I. Asymptotic Methods in Analysis, Vol. 13 of Encyclopaedia of Mathematical Science (Springer, 1989).

Fedoruk, M. V.

M. V. Fedoruk, Saddle Point Method (Nauka, 1977) (in Russian).

Feng, H.

Frigo, M.

M. Frigo and S. G. Johnson, “FFTW,” http://www.fftw.org.

Gantmacher, F. R.

F. R. Gantmacher, The Theory of Matrices (Chelsea, 1959), Vol. 1.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Harvey, A. R.

Hopkins, H. H.

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91-103 (1955).

Johnson, S. G.

M. Frigo and S. G. Johnson, “FFTW,” http://www.fftw.org.

Kaminski, D.

D. Kaminski, “Exponentially improved stationary phase approximations for double integrals,” Methods Appl. Anal. 1, 44-56 (1994).

Lei, H.

Mezouari, S.

Muyo, G.

Ojeda-Castaneda, J.

Pauca, V. P.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67-74 (2004).
[CrossRef]

Plemmons, R. J.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67-74 (2004).
[CrossRef]

Prasad, S.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67-74 (2004).
[CrossRef]

Sherif, S. S.

Silveria, P. E. X.

Somayaji, M.

Tao, X.

Taylor, M. G.

Torgersen, T. C.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67-74 (2004).
[CrossRef]

van der Gracht, J.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67-74 (2004).
[CrossRef]

J. van der Gracht, E. R. Dowski, Jr., M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919-921 (1996).
[CrossRef] [PubMed]

Wong, R.

R. Wong, Asymptotic Approximations of Integrals (Academic, 1989).

Xu, Zh.

Appl. Opt. (8)

Int. J. Imaging Syst. Technol. (1)

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67-74 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

Methods Appl. Anal. (1)

D. Kaminski, “Exponentially improved stationary phase approximations for double integrals,” Methods Appl. Anal. 1, 44-56 (1994).

Opt. Lett. (3)

Proc. R. Soc. London, Ser. A (1)

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London, Ser. A 231, 91-103 (1955).

Other (6)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

F. R. Gantmacher, The Theory of Matrices (Chelsea, 1959), Vol. 1.

M. Frigo and S. G. Johnson, “FFTW,” http://www.fftw.org.

M. Fedoruk, Analysis I. Asymptotic Methods in Analysis, Vol. 13 of Encyclopaedia of Mathematical Science (Springer, 1989).

M. V. Fedoruk, Saddle Point Method (Nauka, 1977) (in Russian).

R. Wong, Asymptotic Approximations of Integrals (Academic, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

MTF of the defocused optical system with the generalized cubic mask. Solid curves, MTF curves obtained with the approximate expression, Eq. (31); scatter plots represent the MTFs calculated numerically using the pupil function, as given by Eq. (36), for varying degrees of defocus w 0 .

Equations (60)

Equations on this page are rendered with MathJax. Learn more.

W ( x , y ) = w 0 ( a x 2 + b x y + c y 2 ) ,
H ( ω x , ω y , w 0 ) = 1 Ω P ( x + ω x 2 , y + ω y 2 ) P * ( x ω x 2 , y ω y 2 ) d x d y ,
P ( x , y ) = f 0 ( x , y ) exp [ i θ ( x , y ) + i w 0 ( a x 2 + b x y + c y 2 ) ] .
f 0 ( x , y ) = { 1 ( x , y ) Ω 0 otherwise } .
H ( ω x , ω y , w 0 ) = 1 Ω p 0 ( x , y , ω x , ω y ) exp [ i F ( x , y , ω x , ω y ) + i w 0 ( 2 a x ω x + b x ω y + b y ω x + 2 c y ω y ) ] d x d y ,
p 0 ( x , y , ω x , ω y ) = f 0 ( x + ω x 2 , y + ω y 2 ) f 0 ( x ω x 2 , y ω y 2 )
F ( x , y , ω x , ω y ) = θ ( x + ω x 2 , y + ω y 2 ) θ ( x ω x 2 , y ω y 2 )
υ x = w 0 ( a ω x + b ω y 2 ) π , υ y = w 0 ( c ω y + b ω x 2 ) π ,
H ̃ ( ω x , ω y , υ x , υ y ) = 1 Ω p 0 ( x , y , ω x , ω y ) exp [ i F ( x , y , ω x , ω y ) + i 2 π ( x υ x + y υ y ) ] d x d y ,
H ̃ ( ω x , ω y , υ x , υ y ) 2 π Ω Δ ( x c , y c ) 1 2 exp [ i F ( x c , y c , ω x , ω y ) + i 2 π ( x c υ x + y c υ y ) + i π δ ( x c , y c ) 4 ] ,
F x ( x c , y c ) + 2 π υ x = 0 ,
F y ( x c , y c ) + 2 π υ y = 0 .
M = [ 2 F x 2 ( x c , y c ) 2 F x y ( x c , y c ) 2 F y x ( x c , y c ) 2 F y 2 ( x c , y c ) ]
Δ ( x c , y c ) = det M = [ 2 F x 2 2 F y 2 2 F x y 2 F y x ] ( x c , y c ) ,
υ x Δ ( x c , y c ) = 0 ,
υ y Δ ( x c , y c ) = 0 .
x = x c ( υ x , υ y ) ,
y = y c ( υ x , υ y ) .
2 F x υ x ( x c , y c ) + 2 π = 0 ,
2 F x υ y ( x c , y c ) = 0 ,
2 F y υ x ( x c , y c ) = 0 ,
2 F y υ y ( x c , y c ) + 2 π = 0 .
2 F x 2 x υ x + 2 F x y y υ x + 2 π = 0 ,
2 F x 2 x υ y + 2 F x y y υ y = 0 ,
2 F y x x υ x + 2 F y 2 y υ x = 0 ,
2 F y x x υ y + 2 F y 2 y υ y + 2 π = 0 .
Δ = 4 π 2 x υ x y υ y x υ y y υ x .
Δ 1 2 = 1 2 π x υ x y υ y x υ y y υ x 1 2 .
x c ( υ x , υ y ) = C 1 υ x + C 2 υ y ,
y c ( υ x , υ y ) = C 3 υ x + C 4 υ y ,
θ ( x , y ) = α ( β 1 x 2 y + β 2 y 2 x + γ 1 x 3 + γ 2 y 3 ) ,
F ( x , y , ω x , ω y ) = α ( β 1 x 2 ω y + β 2 y 2 ω x + 2 β 1 x y ω x + 2 β 2 x y ω y + 3 γ 1 x 2 ω x + 3 γ 2 y 2 ω y ) + α ( β 1 ω x 2 ω y + β 2 ω y 2 ω x + γ 1 ω x 3 + γ 2 ω y 3 ) 4 .
( β 1 ω y + 3 γ 1 ω x ) x c + ( β 1 ω x + β 2 ω y ) y c = π υ x α ,
( β 1 ω x + β 2 ω y ) x c + ( β 2 ω x + 3 γ 2 ω y ) y c = π υ y α ,
x c = π α υ y ( β 1 ω x + β 2 ω y ) υ x ( β 2 ω x + 3 γ 2 ω y ) ( β 1 ω x + β 2 ω y ) 2 ( β 1 ω y + 3 γ 1 ω x ) ( β 2 ω x + 3 γ 2 ω y ) ,
y c = π α υ x ( β 1 ω x + β 2 ω y ) υ y ( β 1 ω y + 3 γ 1 ω x ) ( β 1 ω x + β 2 ω y ) 2 ( β 1 ω y + 3 γ 1 ω x ) ( β 2 ω x + 3 γ 2 ω y ) .
Δ 1 2 = 1 2 α ( β 1 ω x + β 2 ω y ) 2 ( β 1 ω y + 3 γ 1 ω x ) ( β 2 ω x + 3 γ 2 ω y ) 1 2 .
27 ( γ 1 γ 2 ) 2 18 γ 1 γ 2 β 1 β 2 ( β 1 β 2 ) 2 + 4 γ 1 β 2 3 + 4 γ 2 β 1 3 < 0 .
M = [ 2 F x 2 ( x c , y c ) 2 F x y ( x c , y c ) 2 F y x ( x c , y c ) 2 F y 2 ( x c , y c ) ] = 2 α [ ( β 1 ω y + 3 γ 1 ω x ) ( β 1 ω x + β 2 ω y ) ( β 1 ω x + β 2 ω y ) ( β 2 ω x + 3 γ 2 ω y ) ] .
λ 2 λ ( β 1 ω y + β 2 ω x + 3 γ 1 ω x + 3 γ 2 ω y ) + ( β 1 ω y + 3 γ 1 ω x ) ( β 2 ω x + 3 γ 2 ω y ) ( β 1 ω x + β 2 ω y ) 2 = 0 .
H ( ω x , ω y , w 0 ) π exp { i α 4 ( β 1 ω x 2 ω y + β 2 ω y 2 ω x + γ 1 ω x 3 + γ 2 ω y 3 ) + i π 4 δ } Ω α ( β 1 ω x + β 2 ω y ) 2 ( β 1 ω y + 3 γ 1 ω x ) ( β 2 ω x + 3 γ 2 ω y ) 1 2 .
H ( ω x , ω y , w 0 ) { π exp { i α 4 ( β 1 ω x 2 ω y + β 2 ω y 2 ω x + γ 1 ω x 3 + γ 2 ω y 3 ) + i π 4 δ } Ω α ( β 1 ω x + β 2 ω y ) 2 ( β 1 ω y + 3 γ 1 ω x ) ( β 2 ω x + 3 γ 2 ω y ) 1 2 ω x 2 + ω y 2 0 1 ω x 2 + ω y 2 = 0 } .
H ( ω x , ω y , w 0 ) { π exp { i α 4 [ β 1 ω x 2 ω y + β 2 ω y 2 ω x ] } Ω α β 1 2 ω x 2 + β 2 2 ω y 2 + β 1 β 2 ω x ω y 1 2 ω x 2 + ω y 2 0 1 ω x 2 + ω y 2 = 0 } .
H ( ω x , ω y , w 0 ) π exp { i α 4 ( ω x 3 + ω y 3 ) + i π 4 [ sgn ( ω x ) + sgn ( ω y ) ] } 3 Ω α ω x ω y 1 2 ,
H ( 0 , ω y , w 0 ) π 3 Ω α ω y exp { i α 4 ω y 3 + i π 4 sgn ( ω y ) } ,
H ( ω x , 0 , w 0 ) π 3 Ω α ω x exp { i α 4 ω x 3 + i π 4 sgn ( ω x ) } .
H ( ω x , ω y , w 0 ) = 2 π Ω F ̂ 1 { F ̂ [ P ( x , y ) ] 2 } ,
υ x [ 2 F x 2 2 F y 2 2 F x y 2 F y x ] = 0 ,
υ y [ 2 F x 2 2 F y 2 2 F x y 2 F y x ] = 0 ,
x c υ x [ 3 F x 3 2 F y 2 + 2 F x 2 3 F y 2 x 2 2 F y x 3 F x 2 y ] + y c υ x [ 3 F x 2 y 2 F y 2 + 2 F x 2 3 F y 3 2 2 F x y 3 F x y 2 ] = 0 ,
x c υ y [ 3 F x 3 2 F y 2 + 2 F x 2 3 F y 2 x 2 2 F y x 3 F x 2 y ] + y c υ y [ 3 F x 2 y 2 F y 2 + 2 F x 2 3 F y 3 2 2 F x y 3 F x y 2 ] = 0 .
F ( x , y , ω x , ω y ) = n + m 2 a n m ( ω x , ω y ) x n y m ,
F ( x , y , ω x , ω y ) = ω x θ ( x , y ) x + ω y θ ( x , y ) y + 2 3 ! ( ω x 2 x + ω y 2 y ) 3 θ ( x , y ) + .
θ ( x , y ) = n + m 3 b n m x n y m ,
a 00 = b 12 ω x ω y 2 + b 21 ω x 2 ω y 4 + b 01 ω y + b 10 ω x ,
a 01 = b 11 ω x ,
a 10 = b 11 ω y ,
a 11 = 2 b 12 ω y + 2 b 21 ω x ,
a 20 = 2 b 21 ω y ,
a 02 = 2 b 12 ω x .

Metrics