Abstract

Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
    [CrossRef] [PubMed]
  2. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express 14, 6516-6534 (2006).
    [CrossRef] [PubMed]
  3. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066-4082 (2007).
    [CrossRef] [PubMed]
  4. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
    [CrossRef] [PubMed]
  5. R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
    [CrossRef]
  6. B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
    [CrossRef]
  7. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085-2098 (2007).
    [CrossRef] [PubMed]
  8. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837-2858 (2005).
    [CrossRef] [PubMed]
  9. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of the normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
    [CrossRef]
  10. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
    [CrossRef] [PubMed]
  11. T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, “Surface reconstruction for free-space 360° fluorescence molecular tomography and the effects of animal motion,” IEEE Trans. Med. Imaging 27, 188-194 (2008).
    [CrossRef] [PubMed]
  12. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035-1049 (2004).
    [CrossRef]
  13. W. Bangerth, R. Hartmann, and G. Kanschat, “Deal.II--a general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, 24:1-24:27 (2007).
    [CrossRef]
  14. W. Bangerth, R. Hartmann, and G. Kanschat, Deal.II: A Finite Element Differential Equations Analysis Library, http://www.dealii.org.
  15. C. Paige and M. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43-71 (1982).
    [CrossRef]

2008 (1)

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, “Surface reconstruction for free-space 360° fluorescence molecular tomography and the effects of animal motion,” IEEE Trans. Med. Imaging 27, 188-194 (2008).
[CrossRef] [PubMed]

2007 (3)

W. Bangerth, R. Hartmann, and G. Kanschat, “Deal.II--a general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, 24:1-24:27 (2007).
[CrossRef]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066-4082 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

2004 (3)

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

2001 (1)

2000 (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

1995 (1)

R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
[CrossRef]

1982 (1)

C. Paige and M. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43-71 (1982).
[CrossRef]

Alexi Bogdanov, J.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Aronson, R.

R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
[CrossRef]

Bangerth, W.

W. Bangerth, R. Hartmann, and G. Kanschat, “Deal.II--a general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, 24:1-24:27 (2007).
[CrossRef]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express 14, 6516-6534 (2006).
[CrossRef] [PubMed]

W. Bangerth, R. Hartmann, and G. Kanschat, Deal.II: A Finite Element Differential Equations Analysis Library, http://www.dealii.org.

Barbour, R.

R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
[CrossRef]

Barbour, S.

R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
[CrossRef]

Boas, D. A.

Bouman, C. A.

Brooksby, B.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Chance, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Chang, J.

R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
[CrossRef]

Davis, S. C.

Dehghani, H.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066-4082 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Doyley, M.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Graber, H. L.

R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
[CrossRef]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

Hartmann, R.

W. Bangerth, R. Hartmann, and G. Kanschat, “Deal.II--a general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, 24:1-24:27 (2007).
[CrossRef]

W. Bangerth, R. Hartmann, and G. Kanschat, Deal.II: A Finite Element Differential Equations Analysis Library, http://www.dealii.org.

Intes, X.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

Jiang, S.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066-4082 (2007).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Josephson, L.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Joshi, A.

Kanschat, G.

W. Bangerth, R. Hartmann, and G. Kanschat, “Deal.II--a general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, 24:1-24:27 (2007).
[CrossRef]

W. Bangerth, R. Hartmann, and G. Kanschat, Deal.II: A Finite Element Differential Equations Analysis Library, http://www.dealii.org.

Kogel, C.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Koo, P.

R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
[CrossRef]

Lasser, T.

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, “Surface reconstruction for free-space 360° fluorescence molecular tomography and the effects of animal motion,” IEEE Trans. Med. Imaging 27, 188-194 (2008).
[CrossRef] [PubMed]

Millane, R. P.

Milstein, A. B.

Ntziachristos, V.

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, “Surface reconstruction for free-space 360° fluorescence molecular tomography and the effects of animal motion,” IEEE Trans. Med. Imaging 27, 188-194 (2008).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of the normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Oh, S.

Paige, C.

C. Paige and M. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43-71 (1982).
[CrossRef]

Paulsen, K.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Paulsen, K. D.

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066-4082 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

Pogue, B.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Pogue, B. W.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15, 4066-4082 (2007).
[CrossRef] [PubMed]

Poplack, S.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Ripoll, J.

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, “Surface reconstruction for free-space 360° fluorescence molecular tomography and the effects of animal motion,” IEEE Trans. Med. Imaging 27, 188-194 (2008).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Saunders, M.

C. Paige and M. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43-71 (1982).
[CrossRef]

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

Soubret, A.

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, “Surface reconstruction for free-space 360° fluorescence molecular tomography and the effects of animal motion,” IEEE Trans. Med. Imaging 27, 188-194 (2008).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Stott, J. J.

Wang, J.

Weaver, J.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Webb, K. J.

Weissleder, R.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of the normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Yalavarthy, P. K.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

ACM Trans. Math. Softw. (2)

W. Bangerth, R. Hartmann, and G. Kanschat, “Deal.II--a general-purpose object-oriented finite element library,” ACM Trans. Math. Softw. 33, 24:1-24:27 (2007).
[CrossRef]

C. Paige and M. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. 8, 43-71 (1982).
[CrossRef]

IEEE Comput. Sci. Eng. (1)

R. Barbour, S. Barbour, P. Koo, H. L. Graber, R. Aronson, and J. Chang, “MRI-guided optical tomography: Prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63-77 (1995).
[CrossRef]

IEEE Trans. Med. Imaging (2)

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

T. Lasser, A. Soubret, J. Ripoll, and V. Ntziachristos, “Surface reconstruction for free-space 360° fluorescence molecular tomography and the effects of animal motion,” IEEE Trans. Med. Imaging 27, 188-194 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085-2098 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (1)

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837-2858 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, J. Alexi Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. Weaver, S. Poplack, B. Pogue, and K. Paulsen, “Magnetic resonance guided near infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Other (1)

W. Bangerth, R. Hartmann, and G. Kanschat, Deal.II: A Finite Element Differential Equations Analysis Library, http://www.dealii.org.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Rendering of FEM geometry. (b) Rendering showing exterior surface, lung surface, and location of all four fluorescing inclusions used in combination to generate simulated data measurements.

Fig. 2
Fig. 2

Absolute 2-norm error using (a) standard and (b) a priori inversion. Results show consistent improvement when using midrange and matched parameter models. Error levels for the full lung inclusion incorporating a priori structure in the inverse problem are not shown to better display other results.

Fig. 3
Fig. 3

Relative 2-norm error using (a) standard and (b) a priori inversion. Note that relative penalty for using the incorrect model is significantly higher when using a priori inversion techniques.

Fig. 4
Fig. 4

(a) True full-lung image. Reconstructions of inclusion using (b) matched model, (c) mismatched model, (d) midrange model, (e) homogeneous model.

Tables (2)

Tables Icon

Table 1 Modeled and Published Values for μ a

Tables Icon

Table 2 Modeled and Published Values for μ s

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

w ( r s , r d , r ) = G ( r s , r ) G ( r d , r ) G ( r s , r d ) ,
x ̂ = arg min x W x b 2 2 + λ 2 x 2 2 .
e i = x i x true 2 2 x true 2 2 .
e i , relative = e i e matched .

Metrics