Abstract

We propose a fourth-order interference scheme for optical coherence tomography operating with broadband incoherent (or quasi-incoherent) light. It is shown that using this proposal, an axial resolution improvement by a factor of 2 and a better sensitivity for weakly reflecting samples are obtained than with the standard second-order correlation scheme. From a practical perspective, we suggest the use of broadband Q-switched pulses and performing ultrafast intensity correlation with a nonlinear crystal. The global performance of our proposal is illustrated by means of numerical simulations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  3. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
    [CrossRef]
  4. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  5. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  6. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  7. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef] [PubMed]
  8. B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
    [CrossRef]
  9. K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. V. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797-8804 (2007).
    [CrossRef] [PubMed]
  10. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second-harmonic optical coherence tomography,” Opt. Lett. 29, 1090-1092 (2003).
    [CrossRef]
  11. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Pulifiato, R. Margolis, and A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150-152 (1986).
    [CrossRef] [PubMed]
  12. A. Pe'er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15, 8760-8769 (2007).
    [CrossRef] [PubMed]
  13. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27-32 (1956).
    [CrossRef]
  14. Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B 6, 100-103 (1989).
    [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  16. R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 178, 1046-1048 (1956).
    [CrossRef]
  17. R. A. Silverman, “Locally stationary random processes,” IRE Trans. Inf. Theory 3, 182-187 (1957).
    [CrossRef]
  18. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).
  19. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  20. M. Tomita and M. Matsuoka, “Ultrafast pump-probe measurement using intensity correlation of incoherent light,” J. Opt. Soc. Am. B 3, 560-563 (1986).
    [CrossRef]
  21. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancala, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  22. M. C. Teich, R. L. Abrams, and W. B. Gandrud, “Photon-correlation enhancement of SHG at 10.6 μm,” Opt. Commun. 2, 206-208 (1970).
    [CrossRef]
  23. Y. Qu and S. Singh, “Photon correlation effects in second harmonic generation,” Opt. Commun. 90, 111-114 (1992).
    [CrossRef]
  24. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610-615 (2001).
    [CrossRef] [PubMed]
  25. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42, 3038-3046 (2003).
    [CrossRef] [PubMed]
  26. K. Banaszek, A. S. Randunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152-155 (2007).
    [CrossRef]
  27. V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008).
    [CrossRef]
  28. V. Torres-Company, H. Lajunen, and A. T. Friberg, “Nonlocal dispersion cancellation with classical light and its application to remote spectral transfer,” (submitted to New J. Phys., 2009).
  29. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
    [CrossRef] [PubMed]

2008 (1)

V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008).
[CrossRef]

2007 (3)

2006 (1)

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
[CrossRef]

2005 (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

2004 (1)

2003 (4)

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second-harmonic optical coherence tomography,” Opt. Lett. 29, 1090-1092 (2003).
[CrossRef]

D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42, 3038-3046 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

2002 (1)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

2001 (2)

1999 (1)

1992 (1)

Y. Qu and S. Singh, “Photon correlation effects in second harmonic generation,” Opt. Commun. 90, 111-114 (1992).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[CrossRef] [PubMed]

1986 (2)

1970 (1)

M. C. Teich, R. L. Abrams, and W. B. Gandrud, “Photon-correlation enhancement of SHG at 10.6 μm,” Opt. Commun. 2, 206-208 (1970).
[CrossRef]

1957 (1)

R. A. Silverman, “Locally stationary random processes,” IRE Trans. Inf. Theory 3, 182-187 (1957).
[CrossRef]

1956 (2)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27-32 (1956).
[CrossRef]

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 178, 1046-1048 (1956).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Abrams, R. L.

M. C. Teich, R. L. Abrams, and W. B. Gandrud, “Photon-correlation enhancement of SHG at 10.6 μm,” Opt. Commun. 2, 206-208 (1970).
[CrossRef]

Banaszek, K.

K. Banaszek, A. S. Randunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Biancala, F.

Birks, T.

Bizheva, K.

Boppart, S. A.

Bromberg, Y.

Brown, R. Hanbury

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 178, 1046-1048 (1956).
[CrossRef]

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27-32 (1956).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Chudoba, C.

Dayan, B.

De Silvestri, S.

Diels, J. C.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
[CrossRef]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Friberg, A. T.

V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008).
[CrossRef]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Nonlocal dispersion cancellation with classical light and its application to remote spectral transfer,” (submitted to New J. Phys., 2009).

Friesem, A. A.

Fujimoto, J. G.

Gage, E. C.

Gandrud, W. B.

M. C. Teich, R. L. Abrams, and W. B. Gandrud, “Photon-correlation enhancement of SHG at 10.6 μm,” Opt. Commun. 2, 206-208 (1970).
[CrossRef]

Ghanta, R. K.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hartl, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ippen, E. P.

Jiang, Y.

Joly, N.

Karamata, B.

Kartner, F. X.

Knight, J.

Ko, T. H.

Lajunen, H.

V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008).
[CrossRef]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Nonlocal dispersion cancellation with classical light and its application to remote spectral transfer,” (submitted to New J. Phys., 2009).

Lancis, J.

V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008).
[CrossRef]

Lasser, T.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lundeen, J. S.

Magill, B. E.

Mandel, L.

Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B 6, 100-103 (1989).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[CrossRef] [PubMed]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Margolis, R.

Marks, D. L.

Matsuoka, M.

Mitchell, M. V.

Morgner, U.

Nasr, M. B.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Oldenburg, A. L.

Oseroff, A.

Ou, Z. Y.

Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B 6, 100-103 (1989).
[CrossRef]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[CrossRef] [PubMed]

Pe'er, A.

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Pulifiato, C. A.

Puvanathasan, P.

Qu, Y.

Y. Qu and S. Singh, “Photon correlation effects in second harmonic generation,” Opt. Commun. 90, 111-114 (1992).
[CrossRef]

Randunsky, A. S.

K. Banaszek, A. S. Randunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Ranka, J. K.

Resch, K. J.

Reynolds, J. J.

Rudolph, W.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

Russell, P.

Saleh, B. E. A.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Shapiro, J. H.

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
[CrossRef]

Silberberg, Y.

Silverman, R. A.

R. A. Silverman, “Locally stationary random processes,” IRE Trans. Inf. Theory 3, 182-187 (1957).
[CrossRef]

Singh, S.

Y. Qu and S. Singh, “Photon correlation effects in second harmonic generation,” Opt. Commun. 90, 111-114 (1992).
[CrossRef]

Sticker, M.

Stinton, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Teich, M. C.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

M. C. Teich, R. L. Abrams, and W. B. Gandrud, “Photon-correlation enhancement of SHG at 10.6 μm,” Opt. Commun. 2, 206-208 (1970).
[CrossRef]

Tomita, M.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Tomov, I.

Torres-Company, V.

V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008).
[CrossRef]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Nonlocal dispersion cancellation with classical light and its application to remote spectral transfer,” (submitted to New J. Phys., 2009).

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27-32 (1956).
[CrossRef]

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 178, 1046-1048 (1956).
[CrossRef]

Wadsworth, W.

Walmsley, I. A.

K. Banaszek, A. S. Randunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Wang, Y.

Windeler, R. S.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Zawadzki, R.

Appl. Opt. (1)

IRE Trans. Inf. Theory (1)

R. A. Silverman, “Locally stationary random processes,” IRE Trans. Inf. Theory 3, 182-187 (1957).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Nature (2)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27-32 (1956).
[CrossRef]

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 178, 1046-1048 (1956).
[CrossRef]

Opt. Commun. (3)

M. C. Teich, R. L. Abrams, and W. B. Gandrud, “Photon-correlation enhancement of SHG at 10.6 μm,” Opt. Commun. 2, 206-208 (1970).
[CrossRef]

Y. Qu and S. Singh, “Photon correlation effects in second harmonic generation,” Opt. Commun. 90, 111-114 (1992).
[CrossRef]

K. Banaszek, A. S. Randunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152-155 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (3)

V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008).
[CrossRef]

B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (4)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Nonlocal dispersion cancellation with classical light and its application to remote spectral transfer,” (submitted to New J. Phys., 2009).

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Conventional time-domain OCT setup. (b) OCT device based on intensity interferometry with incoherent light.

Fig. 2
Fig. 2

Simulation results for the normalized interferogram in TD-OCT (green solid curve) and the normalized IC-OCT using a stationary light source (red dashed curve) or quasi-stationary light source (blue thick solid curve). It corresponds to the devices of Fig. 1 for a single-layer sample. Normalization is taken with respect to the background of the corresponding interferogram. See details in text.

Fig. 3
Fig. 3

Simulation results for the normalized interferogram in TD-OCT (green solid curve) and the normalized IC-OCT using a stationary light source (red dashed curve) or quasi-stationary light source (blue thick solid curve). A two-layer dielectric sample is considered. See details in text.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( τ ) = I s + I r + 2 R { Γ ( τ ) exp ( i ω 0 τ ) } ,
I s = S ( ω ) H ( ω + ω 0 ) 2 d ω
I r = S ( ω ) d ω
Γ ( τ ) = H ( ω 0 + ω ) S ( ω ) exp ( i ω τ ) d ω ,
C ( τ ) = I s I r + Γ ( τ ) 2 ,
C ( τ ) I s I r f ( τ ) + Γ ( τ ) 2 ,
f ( τ ) = I ̃ ( ω ) I ̃ ( ω ) exp ( i ω τ ) d ω
T = n x n y n z T τ ,
T τ = N T ,
H ( ω ) = n = 0 N r n exp [ i 2 k = 1 n β k ( ω ) L k ] ,

Metrics