Abstract

By using the equivalent eigenvalue equation of a waveguide grating, the mirror effect (Δλλ>15%) with very high reflectivity (R>99%) based on guided-mode resonance (GMR) effects in a poly-Si subwavelength periodic membrane is obtained, and the reflection performance of the poly-Si subwavelength periodic membrane is systematically studied. It is shown that the equivalent eigenvalue equation of a waveguide grating can provide a solid starting point for designing the broadband grating with very high reflectivity. The physical mechanisms of broadband reflection of the strongly modulated waveguide grating structures are investigated theoretically and the important role of multiple GMRs for a broad reflection band is discussed in detail. By using the overlap of a resonance pair in which leaky waveguide modes TE0 and TE1 are excited by the strong first diffraction order, enhanced reflection occurs and a flat reflection band with high reflectivity can be achieved by adding a poly-Si thin film under the grating. The grating period, the grating thickness, and the layer thickness do not change the mirror effect except for the incident angle and the filling factor. A flat band with high reflectivity centered near 1.55μm is designed to demonstrate this concept.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396-402 (1902).
  2. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-887 (1985).
    [CrossRef]
  3. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607-619 (1986).
    [CrossRef]
  4. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  5. D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, “Multiple wavelengths filtering of light through inner resonances,” Phys. Rev. E 72, 066610 (2005).
    [CrossRef]
  6. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617-1626 (1997).
    [CrossRef]
  7. P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008-1010 (1997).
    [CrossRef]
  8. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038-2059 (1997).
    [CrossRef]
  9. A. Mizutani, H. Kikuta, and K. Iwata, “Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching,” J. Opt. Soc. Am. A 22, 355-360 (2005).
    [CrossRef]
  10. T. Katchalski, G. Levy-Yurista, A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13, 4645-4650 (2005).
    [CrossRef] [PubMed]
  11. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discovery 1, 515-528 (2002).
    [CrossRef]
  12. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627-1636 (1997).
    [CrossRef]
  13. Y. Nie, Z. Wang, and C. Lai, “Broad-linewidth bandstop filters with multilayer grating structure,” Proc. SPIE 4927, 357-365 (2002).
    [CrossRef]
  14. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett. 23, 700-702 (1998).
    [CrossRef]
  15. L. Pilozzi, A. D. Andrea, and H. Fenniche, “Mirror effect at the Brewster angle in semiconductor rectangular gratings,” Phys. Rev. B 64, 235319 (2001).
    [CrossRef]
  16. C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004).
    [CrossRef]
  17. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
    [CrossRef]
  18. C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006).
    [CrossRef]
  19. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584-586 (2001).
    [CrossRef]
  20. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661-5674 (2004).
    [CrossRef] [PubMed]
  21. Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12, 1885-1891 (2004).
    [CrossRef] [PubMed]
  22. K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, “Variable optical reflectance of a self-supported Si grating,” Appl. Phys. Lett. 88, 141109 (2006).
    [CrossRef]
  23. J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Self-supported subwavelength gratings with a broad band of high reflectance analysed by the rigorous coupled-wave method,” J. Mod. Opt. 53, 1995-2004 (2006).
    [CrossRef]
  24. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456-3462 (2008).
    [CrossRef] [PubMed]
  25. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
  26. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606-2613 (1993).
    [CrossRef] [PubMed]
  27. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  28. Y. Ding and R. Magnusson, “Doubly-resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135-1137 (2004).
    [CrossRef] [PubMed]
  29. Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14, 1091-1093 (2002).
    [CrossRef]
  30. Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
    [CrossRef]
  31. T. K. Gaylord and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894-937 (1985).
    [CrossRef]
  32. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  33. M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894-896 (2007).
    [CrossRef] [PubMed]
  34. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414-2420 (1995).
    [CrossRef] [PubMed]
  35. D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film multilayer optical filters containing diffractive elements and waveguides,” Proc. SPIE 3133, 273-286 (1997).
    [CrossRef]
  36. J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Rigorous reflectance performance analysis of Si3N4 self-suspended subwavelength gratings,” Opt. Commun. 270, 233-237 (2007).
    [CrossRef]
  37. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556-1558 (1998).
    [CrossRef]
  38. T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15, 9659-9665 (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (3)

2006 (4)

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006).
[CrossRef]

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, “Variable optical reflectance of a self-supported Si grating,” Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Self-supported subwavelength gratings with a broad band of high reflectance analysed by the rigorous coupled-wave method,” J. Mod. Opt. 53, 1995-2004 (2006).
[CrossRef]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
[CrossRef]

2005 (3)

2004 (5)

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12, 1885-1891 (2004).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, “Doubly-resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135-1137 (2004).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661-5674 (2004).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

2002 (3)

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discovery 1, 515-528 (2002).
[CrossRef]

Y. Nie, Z. Wang, and C. Lai, “Broad-linewidth bandstop filters with multilayer grating structure,” Proc. SPIE 4927, 357-365 (2002).
[CrossRef]

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14, 1091-1093 (2002).
[CrossRef]

2001 (2)

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584-586 (2001).
[CrossRef]

L. Pilozzi, A. D. Andrea, and H. Fenniche, “Mirror effect at the Brewster angle in semiconductor rectangular gratings,” Phys. Rev. B 64, 235319 (2001).
[CrossRef]

1998 (2)

1997 (5)

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film multilayer optical filters containing diffractive elements and waveguides,” Proc. SPIE 3133, 273-286 (1997).
[CrossRef]

S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617-1626 (1997).
[CrossRef]

R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

1995 (2)

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

1986 (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607-619 (1986).
[CrossRef]

1985 (2)

A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-887 (1985).
[CrossRef]

T. K. Gaylord and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894-937 (1985).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396-402 (1902).

Andrea, A. D.

L. Pilozzi, A. D. Andrea, and H. Fenniche, “Mirror effect at the Brewster angle in semiconductor rectangular gratings,” Phys. Rev. B 64, 235319 (2001).
[CrossRef]

Bertolotti, M.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, “Multiple wavelengths filtering of light through inner resonances,” Phys. Rev. E 72, 066610 (2005).
[CrossRef]

Brundrett, D. L.

Callender, C. L.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

Chang-Hasnain, C. J.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006).
[CrossRef]

Chen, L.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Cheng, C.-C.

Chou, H.-P.

Cooper, M. A.

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discovery 1, 515-528 (2002).
[CrossRef]

Deng, Y. F.

C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Ding, Y.

Fainman, Y.

Felbacq, D.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, “Multiple wavelengths filtering of light through inner resonances,” Phys. Rev. E 72, 066610 (2005).
[CrossRef]

Fenniche, H.

L. Pilozzi, A. D. Andrea, and H. Fenniche, “Mirror effect at the Brewster angle in semiconductor rectangular gratings,” Phys. Rev. B 64, 235319 (2001).
[CrossRef]

Friesem, A.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Gaylord, T. K.

Glytsis, E. N.

Golubenko, A.

A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-887 (1985).
[CrossRef]

Grann, E. B.

Hane, K.

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Rigorous reflectance performance analysis of Si3N4 self-suspended subwavelength gratings,” Opt. Commun. 270, 233-237 (2007).
[CrossRef]

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, “Variable optical reflectance of a self-supported Si grating,” Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Self-supported subwavelength gratings with a broad band of high reflectance analysed by the rigorous coupled-wave method,” J. Mod. Opt. 53, 1995-2004 (2006).
[CrossRef]

Hasnain, C. J. C.

C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Hierle, R.

Hu, F.-R.

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Rigorous reflectance performance analysis of Si3N4 self-suspended subwavelength gratings,” Opt. Commun. 270, 233-237 (2007).
[CrossRef]

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, “Variable optical reflectance of a self-supported Si grating,” Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Self-supported subwavelength gratings with a broad band of high reflectance analysed by the rigorous coupled-wave method,” J. Mod. Opt. 53, 1995-2004 (2006).
[CrossRef]

Huang, M. C. Y.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Iwata, K.

Kanamori, Y.

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Rigorous reflectance performance analysis of Si3N4 self-suspended subwavelength gratings,” Opt. Commun. 270, 233-237 (2007).
[CrossRef]

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, “Variable optical reflectance of a self-supported Si grating,” Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Self-supported subwavelength gratings with a broad band of high reflectance analysed by the rigorous coupled-wave method,” J. Mod. Opt. 53, 1995-2004 (2006).
[CrossRef]

Katchalski, T.

Kikuta, H.

Kobayashi, T.

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, “Variable optical reflectance of a self-supported Si grating,” Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

Lai, C.

Y. Nie, Z. Wang, and C. Lai, “Broad-linewidth bandstop filters with multilayer grating structure,” Proc. SPIE 4927, 357-365 (2002).
[CrossRef]

Larciprete, M. C.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, “Multiple wavelengths filtering of light through inner resonances,” Phys. Rev. E 72, 066610 (2005).
[CrossRef]

Levy-Yurista, G.

Liu, Z. S.

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14, 1091-1093 (2002).
[CrossRef]

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556-1558 (1998).
[CrossRef]

Lu, C.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006).
[CrossRef]

Magnusson, R.

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456-3462 (2008).
[CrossRef] [PubMed]

M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32, 894-896 (2007).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12, 1885-1891 (2004).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, “Doubly-resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135-1137 (2004).
[CrossRef] [PubMed]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661-5674 (2004).
[CrossRef] [PubMed]

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14, 1091-1093 (2002).
[CrossRef]

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584-586 (2001).
[CrossRef]

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556-1558 (1998).
[CrossRef]

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film multilayer optical filters containing diffractive elements and waveguides,” Proc. SPIE 3133, 273-286 (1997).
[CrossRef]

S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617-1626 (1997).
[CrossRef]

S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34, 2414-2420 (1995).
[CrossRef] [PubMed]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606-2613 (1993).
[CrossRef] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Maldonado, T. A.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film multilayer optical filters containing diffractive elements and waveguides,” Proc. SPIE 3133, 273-286 (1997).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

Martin, G.

Mashev, L.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607-619 (1986).
[CrossRef]

Mateus, C. F. R.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Maystre, D.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607-619 (1986).
[CrossRef]

Mizutani, A.

Moharam, M. G.

Natansohn, A.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

Nie, Y.

Y. Nie, Z. Wang, and C. Lai, “Broad-linewidth bandstop filters with multilayer grating structure,” Proc. SPIE 4927, 357-365 (2002).
[CrossRef]

Pilozzi, L.

L. Pilozzi, A. D. Andrea, and H. Fenniche, “Mirror effect at the Brewster angle in semiconductor rectangular gratings,” Phys. Rev. B 64, 235319 (2001).
[CrossRef]

Pommet, D. A.

Popov, E.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607-619 (1986).
[CrossRef]

Robitaille, L.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

Rochon, P.

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Salvekar, A. A.

Sang, T.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
[CrossRef]

Scalora, M.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, “Multiple wavelengths filtering of light through inner resonances,” Phys. Rev. E 72, 066610 (2005).
[CrossRef]

Scherer, A.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

Shin, D.

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556-1558 (1998).
[CrossRef]

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film multilayer optical filters containing diffractive elements and waveguides,” Proc. SPIE 3133, 273-286 (1997).
[CrossRef]

Shokooh-Saremi, M.

Sibilia, C.

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, “Multiple wavelengths filtering of light through inner resonances,” Phys. Rev. E 72, 066610 (2005).
[CrossRef]

Sun, P.-C.

Suzuki, Y.

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Svakhin, A. S.

A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-887 (1985).
[CrossRef]

Sychugov, V. A.

A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-887 (1985).
[CrossRef]

Tibuleac, S.

Tishchenko, A. V.

A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-887 (1985).
[CrossRef]

Tyan, R.-C.

Wang, L.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
[CrossRef]

Wang, S. S.

Wang, Z.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
[CrossRef]

Y. Nie, Z. Wang, and C. Lai, “Broad-linewidth bandstop filters with multilayer grating structure,” Proc. SPIE 4927, 357-365 (2002).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396-402 (1902).

Wu, Y.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
[CrossRef]

Xu, F.

Ye, J.-S.

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Rigorous reflectance performance analysis of Si3N4 self-suspended subwavelength gratings,” Opt. Commun. 270, 233-237 (2007).
[CrossRef]

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Self-supported subwavelength gratings with a broad band of high reflectance analysed by the rigorous coupled-wave method,” J. Mod. Opt. 53, 1995-2004 (2006).
[CrossRef]

Young, P. P.

Zhu, J.

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, “Linewidth properties of double-layer surface-relief resonant Brewster filters with equal refractive index,” Opt. Express 15, 9659-9665 (2007).
[CrossRef] [PubMed]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
[CrossRef]

Zyss, J.

Appl. Opt. (2)

Appl. Phys. Lett. (5)

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett. 88, 251115 (2006).
[CrossRef]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008-1010 (1997).
[CrossRef]

C. Lu, M. C. Y. Huang, C. F. R. Mateus, C. J. Chang-Hasnain, and Y. Suzuki, “Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror,” Appl. Phys. Lett. 88, 031102 (2006).
[CrossRef]

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, “Variable optical reflectance of a self-supported Si grating,” Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33, 2038-2059 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. C. Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518-520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. C. Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676-1678 (2004).
[CrossRef]

Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14, 1091-1093 (2002).
[CrossRef]

J. Mod. Opt. (1)

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Self-supported subwavelength gratings with a broad band of high reflectance analysed by the rigorous coupled-wave method,” J. Mod. Opt. 53, 1995-2004 (2006).
[CrossRef]

J. Opt. Soc. Am. A (4)

Nat. Rev. Drug Discovery (1)

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discovery 1, 515-528 (2002).
[CrossRef]

Opt. Acta (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607-619 (1986).
[CrossRef]

Opt. Commun. (1)

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, “Rigorous reflectance performance analysis of Si3N4 self-suspended subwavelength gratings,” Opt. Commun. 270, 233-237 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396-402 (1902).

Phys. Rev. B (1)

L. Pilozzi, A. D. Andrea, and H. Fenniche, “Mirror effect at the Brewster angle in semiconductor rectangular gratings,” Phys. Rev. B 64, 235319 (2001).
[CrossRef]

Phys. Rev. E (1)

D. Felbacq, M. C. Larciprete, C. Sibilia, M. Bertolotti, and M. Scalora, “Multiple wavelengths filtering of light through inner resonances,” Phys. Rev. E 72, 066610 (2005).
[CrossRef]

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894-937 (1985).
[CrossRef]

Proc. SPIE (2)

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film multilayer optical filters containing diffractive elements and waveguides,” Proc. SPIE 3133, 273-286 (1997).
[CrossRef]

Y. Nie, Z. Wang, and C. Lai, “Broad-linewidth bandstop filters with multilayer grating structure,” Proc. SPIE 4927, 357-365 (2002).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-887 (1985).
[CrossRef]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of a single layer grating.

Fig. 2
Fig. 2

Estimated resonance locations based on the eigenfunction of the equivalent slab waveguide. n c = n s = 1 , and n eff = 2.56 .

Fig. 3
Fig. 3

Fourier grating harmonics ε q ε 0 as functions of the filling factor for a rectangular waveguide grating profile shown in Fig. 1, where ε 1 ε 0 and ε 2 ε 0 indicate the coupling strength between the incident wave and the first and second evanescent diffracted orders, respectively. n 1 H = 3.48 and n 1 L = 1 [28].

Fig. 4
Fig. 4

Spectra of a wideband reflection structure shown in Fig. 1. The parameters are: n 1 H = 3.48 , n 1 L = n c = n s = 1 , f = 0.5 , Λ = 1 μ m , d 1 = 0.32 μ m , and n eff = 2.56 .

Fig. 5
Fig. 5

Wideband spectra of a poly-Si subwavelength periodic membrane, shown in figure inset. Other parameters are the same as in Fig. 4 except for adding a poly-Si thin film with a thickness of d 2 = 0.048 μ m under the grating.

Fig. 6
Fig. 6

Spectra of wideband reflection as a function of the poly-Si thin film thickness d 2 . Other parameters are the same as in Fig. 5.

Fig. 7
Fig. 7

Spectra of wideband reflection as a function of the grating thickness d 1 . Other parameters are the same as in Fig. 5.

Fig. 8
Fig. 8

Reflection spectra as a function of the incident angle θ 0 . Other parameters are the same as in Fig. 5.

Fig. 9
Fig. 9

Angular response for the central wavelength of λ = 1.55 μ m . Other parameters are the same as in Fig. 5.

Fig. 10
Fig. 10

Spectra of wideband reflection as a function of the filling factor f. Other parameters are the same as in Fig. 5.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Λ ( n c sin θ 0 + n c , s sin θ m ) = m λ , m = 0 , ± 1 , ± 2 , ,
Λ < λ n c sin θ 0 + max ( n c , n s ) .
n eff = [ n 1 H 2 f + n 1 L 2 ( 1 f ) ] 1 2 .
max ( n c , n s ) < N υ < n eff .
N υ = β υ k ( n c sin θ 0 m λ Λ ) ,
m λ n eff < Λ < λ max ( n c , n s ) ,
κ d 1 = arctan ( γ κ ) + arctan ( δ κ ) + υ π , υ = 0 , 1 , 2 ,
κ = ( n eff 2 k 2 β υ 2 ) 1 2 ,
δ = ( β υ 2 n s 2 k 2 ) 1 2 ,
γ = ( β υ 2 n c 2 k 2 ) 1 2 ,
ε ( x ) = + ε q exp ( j q K x ) ,
ε q = ( n 1 H 2 n 1 L 2 ) sin ( π q f ) π q ,

Metrics