Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Study on electromagnetic scattering from the time-varying lossy dielectric ocean and a moving conducting plate above it

Not Accessible

Your library or personal account may give you access

Abstract

The problem of electromagnetic (EM) scattering between the time-varying lossy dielectric ocean and a moving target is always solved by using some numerical algorithm. However, the elements of the impedance matrix and the surface electric and magnetic currents of the lossy dielectric ocean must be determined and evaluated again at different moments due to the varying of the ocean with time, and the numerical algorithm will produce an enormous amount of calculation. To overcome this shortcoming, the reciprocity theorem is used to solve the coupling field between a time-varying lossy dielectric ocean and a moving conducting plate above it. Due to the advantage of the reciprocity theorem, the difficulty in computing the secondary scattered fields is reduced. The polarization currents of the ocean and the first scattered field from the conducting plate are both evaluated by using the physical optics (PO) method. The backscattered field from the ocean is evaluated by using the Kirchhoff approximation (KA) method. The characteristics of the coupling backscattered field and the Doppler spectrum are analyzed in detail for different incident conditions.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
A study of electromagnetic scattering from conducting targets above and below the dielectric rough surface

Lixin Guo, Yu Liang, and Zhensen Wu
Opt. Express 19(7) 5785-5801 (2011)

Composite electromagnetic scattering from an object situated above rough surface

Juan Li, Lixin Guo, and Shuirong Chai
Appl. Opt. 53(35) 8189-8196 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (59)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved