Abstract

We demonstrate a Bragg-reflection grating coupler using a nonlinear dual-core fiber with a long-period grating (LPG) and a fiber Bragg grating (FBG) inscribed in different cores. The LPG couples light from the primary core to the cladding, while the FBG operating in reflection acts to drop the channel from the secondary core. The coupler is nonreflective along the launching core. Theoretical analysis of this structure demonstrates a design for obtaining a flat-top bandpass filter with high reflectivity, steep band transitions, and negligible sidelobes. By launching an intense pump beam into the individual cores, a switchable and a wavelength tunable passband can be achieved. The results demonstrate the usefulness of the device as a grating-based all-optical element.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
    [CrossRef]
  2. T. Erdogan, T. A. Strasser, M. A. Milbrodt, E. J. Laskowski, C. H. Henry, and G. E. Kohnke, “Integrated-optical Mach-Zehnder add-drop filter fabricated by a single UV-induced grating exposure,” Appl. Opt. 36, 7838-7845 (1997).
    [CrossRef]
  3. T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157, 249-264 (1998).
    [CrossRef]
  4. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  5. A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81-82 (1999).
    [CrossRef]
  6. M. Das and K. Thyagarajan, “Wavelength-division multiplexing isolation filter using concatenated chirped long period gratings,” Opt. Commun. 197, 67-71 (2001).
    [CrossRef]
  7. S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
    [CrossRef]
  8. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]
  9. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255-266 (2002).
    [CrossRef]
  10. J. Lauzon and A. Chandonnet, “Grating-assisted fused fiber filter,” in Proceedings of the 11th International Conference on Integrated Optics and Optical Fiber Communications and 23rd European Conference on Optical Communications (Institution of Engineering and Technology, 1997), Vol. 448, pp. 169-172.
  11. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 4 of 2000 Technical Digest Series (OSA, 2000), pp. 28-30, paper FB5.
  12. F. Y. M. Chan and K. S. Chiang, “Transfer-matrix method for the analysis of two parallel dissimilar non-uniform long-period fiber gratings,” J. Lightwave Technol. 24, 1008-1018 (2006).
    [CrossRef]
  13. P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36, 251-252 (2000).
    [CrossRef]
  14. B. Ortega and L. Dong, “Selective fused couplers consisting of a mismatched twin-core fiber and a standard optical fiber,” J. Lightwave Technol. 17, 123-128 (1999).
    [CrossRef]
  15. L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996).
    [CrossRef]
  16. J. L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, and L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19, 180-182 (1994).
    [CrossRef] [PubMed]
  17. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996).
    [CrossRef] [PubMed]
  18. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
    [CrossRef] [PubMed]
  19. A. Lin, B. H. Kim, S. Ju, and W. T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M (2007).
    [CrossRef]
  20. Y. H. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Resonant optical nonlinearity measurement of Yb3+/Al3+ codoped optical fibers by use of a long-period fiber grating pair,” Opt. Lett. 27, 580-582 (2002).
    [CrossRef]
  21. F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244, 233-243 (2005).
    [CrossRef]
  22. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  23. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267-1277 (1972).
    [CrossRef]
  24. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nichimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase modulation method with depolarized pump light,” Opt. Lett. 20, 988-990 (1995).
    [CrossRef] [PubMed]
  25. D. Pudo, E. C. Mägi, and B. J. Eggleton, “Long-period gratings in chalcogenide fibers,” Opt. Express 14, 3763-3766 (2006).
    [CrossRef] [PubMed]
  26. M. Imai, S. Sato, and N. Kita, “All-optical switching of a nonlinear fiber-optic grating coupler utilizing cross-phase modulation of intense pump pulse at 1.55 μm,” in Proceedings of the 5th Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim2003), paper TH4A.
  27. H. An, B. Ashton, and S. Fleming, “Long-period-grating-assisted optical add-drop filter based on mismatched twin-core photosensitive-cladding fiber,” Opt. Lett. 29, 343-345 (2004).
    [CrossRef] [PubMed]
  28. K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, “Pototwritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  29. S. B. Poole and J. D. Love, “Single-core fibre to twin-core fibre connector,” Electron. Lett. 27, 1559-1560 (1991).
    [CrossRef]

2007 (1)

A. Lin, B. H. Kim, S. Ju, and W. T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[CrossRef]

2006 (2)

2005 (1)

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244, 233-243 (2005).
[CrossRef]

2004 (1)

2003 (1)

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

2002 (2)

2001 (1)

M. Das and K. Thyagarajan, “Wavelength-division multiplexing isolation filter using concatenated chirped long period gratings,” Opt. Commun. 197, 67-71 (2001).
[CrossRef]

2000 (1)

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36, 251-252 (2000).
[CrossRef]

1999 (2)

B. Ortega and L. Dong, “Selective fused couplers consisting of a mismatched twin-core fiber and a standard optical fiber,” J. Lightwave Technol. 17, 123-128 (1999).
[CrossRef]

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

1998 (2)

1997 (3)

1996 (3)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

1995 (2)

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
[CrossRef]

T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nichimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase modulation method with depolarized pump light,” Opt. Lett. 20, 988-990 (1995).
[CrossRef] [PubMed]

1994 (1)

1991 (1)

S. B. Poole and J. D. Love, “Single-core fibre to twin-core fibre connector,” Electron. Lett. 27, 1559-1560 (1991).
[CrossRef]

1972 (1)

Abramov, A. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Albert, J.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
[CrossRef]

An, H.

Archambault, J. L.

Ashton, B.

Barcelos, S.

Bennion, I.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Bilodeau, F.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
[CrossRef]

Birks, T. A.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996).
[CrossRef]

Bucholtz, F.

Chan, F. Y. M.

Chandonnet, A.

J. Lauzon and A. Chandonnet, “Grating-assisted fused fiber filter,” in Proceedings of the 11th International Conference on Integrated Optics and Optical Fiber Communications and 23rd European Conference on Optical Communications (Institution of Engineering and Technology, 1997), Vol. 448, pp. 169-172.

Chandrasekhar, S.

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

Chiang, K. S.

Chung, Y.

Das, M.

M. Das and K. Thyagarajan, “Wavelength-division multiplexing isolation filter using concatenated chirped long period gratings,” Opt. Commun. 197, 67-71 (2001).
[CrossRef]

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Dimarcello, F. V.

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

Dong, L.

B. Ortega and L. Dong, “Selective fused couplers consisting of a mismatched twin-core fiber and a standard optical fiber,” J. Lightwave Technol. 17, 123-128 (1999).
[CrossRef]

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157, 249-264 (1998).
[CrossRef]

T. Erdogan, T. A. Strasser, M. A. Milbrodt, E. J. Laskowski, C. H. Henry, and G. E. Kohnke, “Integrated-optical Mach-Zehnder add-drop filter fabricated by a single UV-induced grating exposure,” Appl. Opt. 36, 7838-7845 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Feinberg, J.

V. Grubsky, D. S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 4 of 2000 Technical Digest Series (OSA, 2000), pp. 28-30, paper FB5.

Fleming, S.

Ghalmi, S.

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

Grubsky, V.

V. Grubsky, D. S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 4 of 2000 Technical Digest Series (OSA, 2000), pp. 28-30, paper FB5.

Hale, A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Han, W. T.

A. Lin, B. H. Kim, S. Ju, and W. T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[CrossRef]

Y. H. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Resonant optical nonlinearity measurement of Yb3+/Al3+ codoped optical fibers by use of a long-period fiber grating pair,” Opt. Lett. 27, 580-582 (2002).
[CrossRef]

Henry, C. H.

Hill, K. O.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
[CrossRef]

Hua, P.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996).
[CrossRef]

J. L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, and L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19, 180-182 (1994).
[CrossRef] [PubMed]

Imai, M.

M. Imai, S. Sato, and N. Kita, “All-optical switching of a nonlinear fiber-optic grating coupler utilizing cross-phase modulation of intense pump pulse at 1.55 μm,” in Proceedings of the 5th Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim2003), paper TH4A.

Inouye, H.

K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, “Pototwritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Johnson, D. C.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
[CrossRef]

Ju, S.

A. Lin, B. H. Kim, S. Ju, and W. T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[CrossRef]

Judkins, J. B.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kato, T.

Kersey, A. D.

Kim, B. H.

A. Lin, B. H. Kim, S. Ju, and W. T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[CrossRef]

Kim, Y. H.

Kita, N.

M. Imai, S. Sato, and N. Kita, “All-optical switching of a nonlinear fiber-optic grating coupler utilizing cross-phase modulation of intense pump pulse at 1.55 μm,” in Proceedings of the 5th Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim2003), paper TH4A.

Kohnke, G. E.

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Lam, P. K.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36, 251-252 (2000).
[CrossRef]

Laskowski, E. J.

Lauzon, J.

J. Lauzon and A. Chandonnet, “Grating-assisted fused fiber filter,” in Proceedings of the 11th International Conference on Integrated Optics and Optical Fiber Communications and 23rd European Conference on Optical Communications (Institution of Engineering and Technology, 1997), Vol. 448, pp. 169-172.

Lee, B. H.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Lin, A.

A. Lin, B. H. Kim, S. Ju, and W. T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[CrossRef]

Love, J. D.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36, 251-252 (2000).
[CrossRef]

S. B. Poole and J. D. Love, “Single-core fibre to twin-core fibre connector,” Electron. Lett. 27, 1559-1560 (1991).
[CrossRef]

Mägi, E. C.

Malo, B.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
[CrossRef]

Milbrodt, M. A.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, “Pototwritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, “Pototwritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Nichimura, M.

Ortega, B.

Paek, U. C.

Patrick, H. J.

Poole, S. B.

S. B. Poole and J. D. Love, “Single-core fibre to twin-core fibre connector,” Electron. Lett. 27, 1559-1560 (1991).
[CrossRef]

Pudo, D.

Qiu, J.

K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, “Pototwritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Ramachandran, S.

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

Reed, W. A.

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

Reekie, L.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996).
[CrossRef]

J. L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, and L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19, 180-182 (1994).
[CrossRef] [PubMed]

Russell, P. St. J.

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996).
[CrossRef]

J. L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, and L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19, 180-182 (1994).
[CrossRef] [PubMed]

Ryazansky, I.

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

Sasaoka, E.

Sato, S.

M. Imai, S. Sato, and N. Kita, “All-optical switching of a nonlinear fiber-optic grating coupler utilizing cross-phase modulation of intense pump pulse at 1.55 μm,” in Proceedings of the 5th Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim2003), paper TH4A.

Shu, X.

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Snyder, A. W.

Stark, J. B.

Starodubov, D. S.

V. Grubsky, D. S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 4 of 2000 Technical Digest Series (OSA, 2000), pp. 28-30, paper FB5.

Stevenson, A. J.

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36, 251-252 (2000).
[CrossRef]

Strasser, T. A.

Suetsugu, Y.

Takagi, M.

Theriault, S.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
[CrossRef]

Thyagarajan, K.

M. Das and K. Thyagarajan, “Wavelength-division multiplexing isolation filter using concatenated chirped long period gratings,” Opt. Commun. 197, 67-71 (2001).
[CrossRef]

Vengsarkar, A. M.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Windeler, R. S.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Wisk, P.

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

Yan, M. F.

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

Zhang, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Miura, J. Qiu, H. Inouye, and T. Mitsuyu, “Pototwritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Electron. Lett. (3)

S. B. Poole and J. D. Love, “Single-core fibre to twin-core fibre connector,” Electron. Lett. 27, 1559-1560 (1991).
[CrossRef]

P. K. Lam, A. J. Stevenson, and J. D. Love, “Bandpass spectra of evanescent couplers with long period gratings,” Electron. Lett. 36, 251-252 (2000).
[CrossRef]

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M. F. Yan, F. V. Dimarcello, W. A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15, 727-729 (2003).
[CrossRef]

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 399-390 (1995).
[CrossRef]

L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658 (1996).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. (1)

Opt. Commun. (3)

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244, 233-243 (2005).
[CrossRef]

T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157, 249-264 (1998).
[CrossRef]

M. Das and K. Thyagarajan, “Wavelength-division multiplexing isolation filter using concatenated chirped long period gratings,” Opt. Commun. 197, 67-71 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627-1630 (1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Lin, B. H. Kim, S. Ju, and W. T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M (2007).
[CrossRef]

Other (4)

J. Lauzon and A. Chandonnet, “Grating-assisted fused fiber filter,” in Proceedings of the 11th International Conference on Integrated Optics and Optical Fiber Communications and 23rd European Conference on Optical Communications (Institution of Engineering and Technology, 1997), Vol. 448, pp. 169-172.

V. Grubsky, D. S. Starodubov, and J. Feinberg, “Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 4 of 2000 Technical Digest Series (OSA, 2000), pp. 28-30, paper FB5.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

M. Imai, S. Sato, and N. Kita, “All-optical switching of a nonlinear fiber-optic grating coupler utilizing cross-phase modulation of intense pump pulse at 1.55 μm,” in Proceedings of the 5th Pacific Rim Conference on Lasers and Electro-Optics (CLEO/Pacific Rim2003), paper TH4A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of a dual-core fiber consisting of LPG and FBG inscribed in different cores.

Fig. 2
Fig. 2

Dependences of the coupling coefficient κ 11 and the grating length L 1 (for complete power transfer at 1.550 μ m through the LPG in section 1) on the core separation distance d for r 1 = 3.0 and 3.6 μ m . A value of δ n 11 = 8.5 × 10 4 is assumed.

Fig. 3
Fig. 3

Variations of the coupling coefficients C 12 and C 21 with the core separation distance d for different core radii, r 1 = 3.0 and r 2 = 3.6 μ m , r 1 = r 2 = 3.0 μ m , and r 1 = r 2 = 3.6 μ m .

Fig. 4
Fig. 4

Dependences of the coupling coefficient κ 21 and the grating length L 2 (for achieving a reflectivity of 0.1 dB at 1.550 μ m ) on the core radius r 2 . A value of δ n 21 = 8.5 × 10 4 is assumed.

Fig. 5
Fig. 5

Reflection spectra of Bragg-reflection filters using FBGs without apodization ( N = 1 ) and with Gaussian index apodization ( N = 25 ) for w = 0.6 and 0.4. A uniform LPG ( M = 1 ) is assumed.

Fig. 6
Fig. 6

Schematic of a switchable Bragg-reflection filter.

Fig. 7
Fig. 7

Dependence of the reflectivity at 1.550 μ m on the pump power P 1 , where an apodized FBG of a Gaussian refractive index with N = 25 , w = 0.4 , M = 1 , b = 1 , and n 2 NL = 2 × 10 15 m 2 W are assumed.

Fig. 8
Fig. 8

Reflection spectra of a Bragg-reflection filter using a Gaussian index-apodized FBG with N = 25 and w = 0.4 for P 1 = 0 , 0.21, and 0.46 W . A uniform LPG ( M = 1 ) is assumed. The reflective signal is switched to less than 30 dB using a pump power of 0.46 W .

Fig. 9
Fig. 9

Schematic of a wavelength tunable Bragg-reflection filter.

Fig. 10
Fig. 10

Dependence of the resonance wavelength on the pump power P 2 , where an apodized FBG of a Gaussian refractive index with N = 25 , w = 0.4 , M = 1 , b = 1 , and n 2 NL = 2 × 10 15 m 2 W are assumed.

Fig. 11
Fig. 11

Reflection spectra of a Bragg-reflection filter using a Gaussian index-apodized FBG with N = 25 and w = 0.4 for P 2 = 0 , 9, and 19 W showing the achievement of a cross talk of below 25 dB . A uniform LPG ( M = 1 ) is assumed.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

λ 1 = ( N 01 , 1 N 0 m ) Λ 1 ,
λ 2 = ( N 01 , 2 + N 0 m ) Λ 2 ,
d A ( z ) d z = j κ 1 i B exp [ j δ 1 ( z z i 1 ) ] exp ( j ϕ i ) ,
d B ( z ) d z = j κ 1 i A exp [ j δ 1 ( z z i 1 ) ] exp ( j ϕ i ) ,
δ 1 = 2 π Λ 1 ( λ 1 λ 1 )
d B ( z ) d z = j κ 2 i A ¯ exp [ j δ 2 ( z z M + i 1 ) ] exp ( j φ i ) ,
d A ¯ ( z ) d z = j κ 2 i B exp [ j δ 2 ( z z M + i 1 ) ] exp ( j φ i ) ,
δ 2 = 2 π Λ 2 ( λ 2 λ 1 )
[ B ( z ) A ¯ ( z ) ] = [ e j ( δ 2 2 ) ( z z M + i 1 ) 0 0 e j ( δ 2 2 ) ( z z M + i 1 ) ] × [ cos [ Q 2 i ( z z M + i 1 ) ] j δ 2 2 Q 2 i sin [ Q 2 i ( z z M + i 1 ) ] j κ 2 i Q 2 i e j φ i sin [ Q 2 i ( z z M + i 1 ) ] j κ 2 i Q 2 i e j φ i sin [ Q 2 i ( z z M + i 1 ) ] cos [ Q 2 i ( z z M + i 1 ) ] + j δ 2 2 Q 2 i sin [ Q 2 i ( z z M + i 1 ) ] ] [ B ( z M + i 1 ) A ¯ ( z M + i 1 ) ] ,
Q 2 i = δ 2 2 4 κ 2 i 2 2 .
R = [ κ 11 κ 21 Q 11 Q 21 sin ( Q 11 L 1 ) sin ( Q 21 L 2 ) ] 2 cos 2 ( Q 21 L 2 ) + [ δ 2 2 Q 21 sin ( Q 21 L 2 ) ] 2 ,
R 0 = [ sin ( κ 11 L 1 ) tanh ( κ 21 L 2 ) ] 2 .
κ j i = π δ n j i I j λ j , j = 1 , 2 ,
I j = 2 π A j 0 [ u j r j J 1 ( u j ) J 0 ( u 3 r j ρ ) + u 3 ρ J 0 ( u j ) J 1 ( u 3 r j ρ ) ] J 0 ( u j ) [ ( u 3 ρ ) 2 ( u j r j ) 2 ] [ ( J 1 ( u j ) J 0 ( u j ) ) 2 + ( K 1 ( w j ) K 0 ( w j ) ) 2 ] 1 2 0 2 π 0 E cl r d r d ϕ ,
u j = r j k 0 n 1 2 N 01 , j 2 ,
u 3 = ρ k 0 n 2 2 N 0 m 2 ,
u 3 = ρ k 0 n 1 2 N 0 m 2 ,
w j = r j k 0 N 01 , j 2 n 2 2 ,
w 3 = ρ k 0 N 0 m 2 n 3 2 ,
C i j = 2 k 0 ( n 1 n 2 ) K 0 ( w j d r j ) [ u i r i J 1 ( u i ) I 0 ( w j r i r j ) + w j r j J 0 ( u i ) I 1 ( w j r i r j ) ] r j K 0 ( w j ) J 0 ( u i ) [ ( u i r i ) 2 + ( w j r j ) 2 ] [ ( J 1 ( u i ) J 0 ( u i ) ) 2 + ( K 1 ( w i ) K 0 ( w i ) ) 2 ] 1 2 [ ( J 1 ( u j ) J 0 ( u j ) ) 2 + ( K 1 ( w j ) K 0 ( w j ) ) 2 ] 1 2 ,
i , j = 1 , 2 , i j ,
C 12 = C 21 = 2 Δ r 1 u 1 2 v 1 3 K 0 ( w 1 d r 1 ) K 1 2 ( w 1 ) ,
κ 11 = π 2 L 1
L 2 = tanh 1 R 0 κ 21 .
κ 2 i = κ ¯ 2 f i j = 1 j = N f i ,
f i = exp [ ln 2 ( 2 i N 1 N w ) 2 ] ,
n 1 NL = n 1 + 2 b n 2 NL P A eff ,

Metrics