A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,” J. Biomed. Opt. 9, 1046-1062 (2004).

[CrossRef]
[PubMed]

W. B. Wang, J. H. Ali, J. H. Vitenson, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288-293 (2003).

[CrossRef]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

W. B. Wang, J. H. Ali, M. Zevallos, and R. R. Alfano, “Near infrared imaging of human prostate cancerous and normal tissues based on water absorption,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 2004), MF 38; on CD-ROM.

W. B. Wang, J. H. Ali, J. H. Vitenson, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288-293 (2003).

[CrossRef]

W. B. Wang, J. H. Ali, M. Zevallos, and R. R. Alfano, “Near infrared imaging of human prostate cancerous and normal tissues based on water absorption,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 2004), MF 38; on CD-ROM.

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, pp. 841-853 (1997).

[CrossRef]
[PubMed]

S. R. Arridge and M. Schweiger, “A general framework for iterative reconstruction algorithms in optical tomography, using a finite-element method,” in Computational Radiology and Imaging: Therapy and Diagnosis, C.Borgers and F.Natterer, eds., Vol. 110 of IMA Volumes in Mathematics and its Applications (Springer-Verlag, 1998), pp. 45-70.

[CrossRef]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378-385 (1993).

[CrossRef]
[PubMed]

L. Beilina and M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem,” SIAM J. Sci. Comput. (USA) 31, 478-509 (2008).

[CrossRef]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,” J. Biomed. Opt. 9, 1046-1062 (2004).

[CrossRef]
[PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76-90 (2001).

[CrossRef]
[PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusion-photon tomography,” Opt. Lett. 20, 426-428 (1995).

[CrossRef]
[PubMed]

A. G. Yodh and D. A. Boas, “Functional imaging with diffusing light,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press), 21-1-21-45 (2003).

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).

[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

A. L. Bukhgeim and M. V. Klibanov, “Uniqueness in the large class of multidimensional inverse problems,” Sov. Math. Dokl. 17, 244-247 (1981).

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusion-photon tomography,” Opt. Lett. 20, 426-428 (1995).

[CrossRef]
[PubMed]

S. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43-47 (1993).

[CrossRef]
[PubMed]

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378-385 (1993).

[CrossRef]
[PubMed]

B. Chance, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Biomedical Topical Meeting, Vol. 71 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. 450-455.

E. W. Cheney, Introduction to Approximation Theory (Chelsea, 1982).

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76-90 (2001).

[CrossRef]
[PubMed]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

E. A. Coddington and N. Levinson, Theory of Differential Equations, (Krieger, 1984).

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).

[CrossRef]
[PubMed]

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004).

[CrossRef]
[PubMed]

L. C. Evans, Partial Differential Equations (American Mathematical Society, 1998).

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76-90 (2001).

[CrossRef]
[PubMed]

A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004).

[CrossRef]
[PubMed]

S. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43-47 (1993).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

S. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43-47 (1993).

[CrossRef]
[PubMed]

Y. A. Gryazin, M. V. Klibanov, and T. R. Lucas, “Numerical solution of a subsurface imaging inverse problem,” SIAM J. Appl. Math. 62, 664-683 (2001).

[CrossRef]

A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004).

[CrossRef]
[PubMed]

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262-271 (1999).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, pp. 841-853 (1997).

[CrossRef]
[PubMed]

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,” J. Biomed. Opt. 9, 1046-1062 (2004).

[CrossRef]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262-271 (1999).

[CrossRef]
[PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

E. Isaacson and H. B. Keller, Analysis of Numerical Methods (Wiley, 1966).

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).

[CrossRef]
[PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822-824 (2001).

[CrossRef]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

H. B. Keller and D. J. Perozzi, “Fast seismic ray tracing,” SIAM J. Appl. Math. 43, 981-992 (1983).

[CrossRef]

E. Isaacson and H. B. Keller, Analysis of Numerical Methods (Wiley, 1966).

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

L. Beilina and M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem,” SIAM J. Sci. Comput. (USA) 31, 478-509 (2008).

[CrossRef]

H. Shan, M. V. Klibanov, H. Liu, N. Pantong, and J. Su, “Numerical implementation of the convexification algorithm for an optical diffusion tomograph,” Inverse Probl. 24, 025006 (2008).

[CrossRef]

M. V. Klibanov and A. Timonov, “Numerical studies on the globally convergent convexification algorithm in 2D,” Inverse Probl. 23, 123-138 (2007).

[CrossRef]

J. Su, H. Shan, H. Liu, and M. V. Klibanov, “Reconstruction method with data from a multiple-site continuous-wave source for three-dimensional optical tomography,” J. Opt. Soc. Am. A 23, 2388-2395 (2006).

[CrossRef]

Y. A. Gryazin, M. V. Klibanov, and T. R. Lucas, “Numerical solution of a subsurface imaging inverse problem,” SIAM J. Appl. Math. 62, 664-683 (2001).

[CrossRef]

M. V. Klibanov, “Inverse problems and Carleman estimates,” Inverse Probl. 8, 575-586 (1992).

[CrossRef]

A. L. Bukhgeim and M. V. Klibanov, “Uniqueness in the large class of multidimensional inverse problems,” Sov. Math. Dokl. 17, 244-247 (1981).

M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications (Brill, 2004).

H. Shan, M. V. Klibanov, J. Su, N. Pantong, and H. Liu, “A globally accelerated numerical method for optical tomography with continuous wave source,” J Inv. Ill-Posed Probl. accepted for publication. A preprint can be found online at http://arxiv.org/abs/0809.3910 (date of last access: October 8, 2008).

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262-271 (1999).

[CrossRef]
[PubMed]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

O. A. Ladyzhenskaya and N. N. Uralceva, Linear and Quasilinear Elliptic Equations (Academic, 1969).

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,” J. Biomed. Opt. 9, 1046-1062 (2004).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

E. A. Coddington and N. Levinson, Theory of Differential Equations, (Krieger, 1984).

E. E. Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport (Wiley, 1984).

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

H. Shan, M. V. Klibanov, H. Liu, N. Pantong, and J. Su, “Numerical implementation of the convexification algorithm for an optical diffusion tomograph,” Inverse Probl. 24, 025006 (2008).

[CrossRef]

J. Su, H. Shan, H. Liu, and M. V. Klibanov, “Reconstruction method with data from a multiple-site continuous-wave source for three-dimensional optical tomography,” J. Opt. Soc. Am. A 23, 2388-2395 (2006).

[CrossRef]

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378-385 (1993).

[CrossRef]
[PubMed]

H. Shan, M. V. Klibanov, J. Su, N. Pantong, and H. Liu, “A globally accelerated numerical method for optical tomography with continuous wave source,” J Inv. Ill-Posed Probl. accepted for publication. A preprint can be found online at http://arxiv.org/abs/0809.3910 (date of last access: October 8, 2008).

W. B. Wang, J. H. Ali, J. H. Vitenson, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288-293 (2003).

[CrossRef]

Y. A. Gryazin, M. V. Klibanov, and T. R. Lucas, “Numerical solution of a subsurface imaging inverse problem,” SIAM J. Appl. Math. 62, 664-683 (2001).

[CrossRef]

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76-90 (2001).

[CrossRef]
[PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76-90 (2001).

[CrossRef]
[PubMed]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

E. E. Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport (Wiley, 1984).

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378-385 (1993).

[CrossRef]
[PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

M. V. Newberry, “Signal-to-noise considerations for sky-subtracted CCD data,” Publ. Astron. Soc. Pac. 163, 122 (1991). Available on website http://adsabs.harvard.edu/abs/1991PASP.103.122N (date of last access: October 8, 2008).

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).

[PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

H. Shan, M. V. Klibanov, H. Liu, N. Pantong, and J. Su, “Numerical implementation of the convexification algorithm for an optical diffusion tomograph,” Inverse Probl. 24, 025006 (2008).

[CrossRef]

H. Shan, M. V. Klibanov, J. Su, N. Pantong, and H. Liu, “A globally accelerated numerical method for optical tomography with continuous wave source,” J Inv. Ill-Posed Probl. accepted for publication. A preprint can be found online at http://arxiv.org/abs/0809.3910 (date of last access: October 8, 2008).

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).

[CrossRef]
[PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822-824 (2001).

[CrossRef]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

H. B. Keller and D. J. Perozzi, “Fast seismic ray tracing,” SIAM J. Appl. Math. 43, 981-992 (1983).

[CrossRef]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).

[CrossRef]
[PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822-824 (2001).

[CrossRef]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations (Springer-Verlag, 1984).

[CrossRef]

S. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43-47 (1993).

[CrossRef]
[PubMed]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

S. R. Arridge and M. Schweiger, “A general framework for iterative reconstruction algorithms in optical tomography, using a finite-element method,” in Computational Radiology and Imaging: Therapy and Diagnosis, C.Borgers and F.Natterer, eds., Vol. 110 of IMA Volumes in Mathematics and its Applications (Springer-Verlag, 1998), pp. 45-70.

[CrossRef]

A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004).

[CrossRef]
[PubMed]

H. Shan, M. V. Klibanov, H. Liu, N. Pantong, and J. Su, “Numerical implementation of the convexification algorithm for an optical diffusion tomograph,” Inverse Probl. 24, 025006 (2008).

[CrossRef]

J. Su, H. Shan, H. Liu, and M. V. Klibanov, “Reconstruction method with data from a multiple-site continuous-wave source for three-dimensional optical tomography,” J. Opt. Soc. Am. A 23, 2388-2395 (2006).

[CrossRef]

H. Shan, M. V. Klibanov, J. Su, N. Pantong, and H. Liu, “A globally accelerated numerical method for optical tomography with continuous wave source,” J Inv. Ill-Posed Probl. accepted for publication. A preprint can be found online at http://arxiv.org/abs/0809.3910 (date of last access: October 8, 2008).

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).

[CrossRef]
[PubMed]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,” J. Biomed. Opt. 9, 1046-1062 (2004).

[CrossRef]
[PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76-90 (2001).

[CrossRef]
[PubMed]

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

H. Shan, M. V. Klibanov, H. Liu, N. Pantong, and J. Su, “Numerical implementation of the convexification algorithm for an optical diffusion tomograph,” Inverse Probl. 24, 025006 (2008).

[CrossRef]

J. Su, H. Shan, H. Liu, and M. V. Klibanov, “Reconstruction method with data from a multiple-site continuous-wave source for three-dimensional optical tomography,” J. Opt. Soc. Am. A 23, 2388-2395 (2006).

[CrossRef]

H. Shan, M. V. Klibanov, J. Su, N. Pantong, and H. Liu, “A globally accelerated numerical method for optical tomography with continuous wave source,” J Inv. Ill-Posed Probl. accepted for publication. A preprint can be found online at http://arxiv.org/abs/0809.3910 (date of last access: October 8, 2008).

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004).

[CrossRef]
[PubMed]

A. N. Tikhonov and V. Ya Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).

M. V. Klibanov and A. Timonov, “Numerical studies on the globally convergent convexification algorithm in 2D,” Inverse Probl. 23, 123-138 (2007).

[CrossRef]

M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications (Brill, 2004).

O. A. Ladyzhenskaya and N. N. Uralceva, Linear and Quasilinear Elliptic Equations (Academic, 1969).

W. B. Wang, J. H. Ali, J. H. Vitenson, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288-293 (2003).

[CrossRef]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378-385 (1993).

[CrossRef]
[PubMed]

W. B. Wang, J. H. Ali, J. H. Vitenson, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288-293 (2003).

[CrossRef]

W. B. Wang, J. H. Ali, M. Zevallos, and R. R. Alfano, “Near infrared imaging of human prostate cancerous and normal tissues based on water absorption,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 2004), MF 38; on CD-ROM.

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations (Springer-Verlag, 1984).

[CrossRef]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).

[PubMed]

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

A. N. Tikhonov and V. Ya Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusion-photon tomography,” Opt. Lett. 20, 426-428 (1995).

[CrossRef]
[PubMed]

A. G. Yodh and D. A. Boas, “Functional imaging with diffusing light,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press), 21-1-21-45 (2003).

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

W. B. Wang, J. H. Ali, M. Zevallos, and R. R. Alfano, “Near infrared imaging of human prostate cancerous and normal tissues based on water absorption,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 2004), MF 38; on CD-ROM.

A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004).

[CrossRef]
[PubMed]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, and B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378-385 (1993).

[CrossRef]
[PubMed]

C. Schmitz, D. Klemer, R. Hardin, M. Katz, Y. Pei, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140-2153 (2005).

[CrossRef]
[PubMed]

Y. Xu, X. Gu, L. Fajardo, and H. Jiang, “In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations,” Appl. Opt. 42, 3163-3169 (2003).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).

[PubMed]

W. B. Wang, J. H. Ali, J. H. Vitenson, J. M. Lombardo, and R. R. Alfano, “Spectral polarization imaging of human rectum-membrane-prostate tissues,” IEEE J. Sel. Top. Quantum Electron. 9, 288-293 (2003).

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262-271 (1999).

[CrossRef]
[PubMed]

M. V. Klibanov and A. Timonov, “Numerical studies on the globally convergent convexification algorithm in 2D,” Inverse Probl. 23, 123-138 (2007).

[CrossRef]

H. Shan, M. V. Klibanov, H. Liu, N. Pantong, and J. Su, “Numerical implementation of the convexification algorithm for an optical diffusion tomograph,” Inverse Probl. 24, 025006 (2008).

[CrossRef]

M. V. Klibanov, “Inverse problems and Carleman estimates,” Inverse Probl. 8, 575-586 (1992).

[CrossRef]

A. Godavarty, A. B. Thompson, Jr., R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraka, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488-496 (2004).

[CrossRef]
[PubMed]

A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, “Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,” J. Biomed. Opt. 9, 1046-1062 (2004).

[CrossRef]
[PubMed]

S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, “Improved quantification of small objects in near-infrared diffuse optical tomography,” J. Biomed. Opt. 9, 1161-1171 (2004).

[CrossRef]
[PubMed]

S. Gopinath, C. S. Robertson, R. G. Grossman, and B. Chance, “Near-infrared spectroscopic localization of intracranial hematomas,” J. Neurosurg. 79, 43-47 (1993).

[CrossRef]
[PubMed]

J. C. Schotland, “Continuous-wave diffusion imaging,” J. Opt. Soc. Am. A 14, 275-279 (1997).

[CrossRef]

J. Su, H. Shan, H. Liu, and M. V. Klibanov, “Reconstruction method with data from a multiple-site continuous-wave source for three-dimensional optical tomography,” J. Opt. Soc. Am. A 23, 2388-2395 (2006).

[CrossRef]

V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A 19, 558-566 (2002).

[CrossRef]

K. L. Du, R. Mick, T. M. Busch, T. C. Zhu, J. C. Finlay, G. Yu, A. G. Yodh, S. B. Malkowicz, D. Smith, R. Whittington, D. Stripp, and S. M. Hahn, “Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer,” Lasers Surg. Med. 38, 427-34 (2006).

[CrossRef]
[PubMed]

D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76-90 (2001).

[CrossRef]
[PubMed]

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2, 411-423 (1998).

[CrossRef]
[PubMed]

K. T. Kotz, S. S. Dixit, A. D. Gibbs, J. M. Orduna, Z. Haroon, K. Amin, and G. W. Faris, “Inspiratory contrast for in vivo optical imaging,” Opt. Express 16, 19-31 (2008).

[CrossRef]
[PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusion-photon tomography,” Opt. Lett. 20, 426-428 (1995).

[CrossRef]
[PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822-824 (2001).

[CrossRef]

M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H. W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys. Med. Biol. 47(6), 857-73 (2002).

[PubMed]

G. Zhang, A. Katz, R. R. Alfano, A. D. Kofinas, P. G. Stubblefield, W. Rosenfeld, D. Beyer, D. Maulik, and M. R. Stankovic, “Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets,” Phys. Med. Biol. 45, 3143-3158 (2000).

[CrossRef]
[PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modeling and reconstruction,” Phys. Med. Biol. 42, pp. 841-853 (1997).

[CrossRef]
[PubMed]

H. B. Keller and D. J. Perozzi, “Fast seismic ray tracing,” SIAM J. Appl. Math. 43, 981-992 (1983).

[CrossRef]

Y. A. Gryazin, M. V. Klibanov, and T. R. Lucas, “Numerical solution of a subsurface imaging inverse problem,” SIAM J. Appl. Math. 62, 664-683 (2001).

[CrossRef]

L. Beilina and M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem,” SIAM J. Sci. Comput. (USA) 31, 478-509 (2008).

[CrossRef]

A. L. Bukhgeim and M. V. Klibanov, “Uniqueness in the large class of multidimensional inverse problems,” Sov. Math. Dokl. 17, 244-247 (1981).

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treatment 4, 513-526 (2005).

A. G. Yodh and D. A. Boas, “Functional imaging with diffusing light,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press), 21-1-21-45 (2003).

M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications (Brill, 2004).

W. B. Wang, J. H. Ali, M. Zevallos, and R. R. Alfano, “Near infrared imaging of human prostate cancerous and normal tissues based on water absorption,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 2004), MF 38; on CD-ROM.

B. Chance, “High sensitivity and specificity in human breast cancer detection with near-infrared imaging,” in Biomedical Topical Meeting, Vol. 71 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. 450-455.

A. N. Tikhonov and V. Ya Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).

O. A. Ladyzhenskaya and N. N. Uralceva, Linear and Quasilinear Elliptic Equations (Academic, 1969).

E. W. Cheney, Introduction to Approximation Theory (Chelsea, 1982).

E. Isaacson and H. B. Keller, Analysis of Numerical Methods (Wiley, 1966).

M. V. Newberry, “Signal-to-noise considerations for sky-subtracted CCD data,” Publ. Astron. Soc. Pac. 163, 122 (1991). Available on website http://adsabs.harvard.edu/abs/1991PASP.103.122N (date of last access: October 8, 2008).

E. E. Lewis and W. F. Miller, Jr., Computational Methods of Neutron Transport (Wiley, 1984).

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations (Springer-Verlag, 1984).

[CrossRef]

H. Shan, M. V. Klibanov, J. Su, N. Pantong, and H. Liu, “A globally accelerated numerical method for optical tomography with continuous wave source,” J Inv. Ill-Posed Probl. accepted for publication. A preprint can be found online at http://arxiv.org/abs/0809.3910 (date of last access: October 8, 2008).

S. R. Arridge and M. Schweiger, “A general framework for iterative reconstruction algorithms in optical tomography, using a finite-element method,” in Computational Radiology and Imaging: Therapy and Diagnosis, C.Borgers and F.Natterer, eds., Vol. 110 of IMA Volumes in Mathematics and its Applications (Springer-Verlag, 1998), pp. 45-70.

[CrossRef]

L. C. Evans, Partial Differential Equations (American Mathematical Society, 1998).

E. A. Coddington and N. Levinson, Theory of Differential Equations, (Krieger, 1984).