Abstract

Biomedical photoacoustic tomography (PAT) can provide qualitative images of biomedical soft tissue with high spatial resolution. However, whether it is possible to give accurate quantitative estimates of the spatially varying concentrations of the sources of photoacoustic contrast—endogenous or exogenous chromophores—remains an open question. Even if the chromophores’ absorption spectra are known, the problem is nonlinear and ill-posed. We describe a framework for obtaining such quantitative estimates. When the optical scattering distribution is known, adjoint and gradient-based optimization techniques can be used to recover the concentration distributions of the individual chromophores that contribute to the overall tissue absorption. When the scattering distribution is unknown, prior knowledge of the wavelength dependence of the scattering is shown to be sufficient to overcome the absorption-scattering nonuniqueness and allow both distributions of chromophore concentrations and scattering to be recovered from multiwavelength photoacoustic images.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (39)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription