Abstract

Existing observer models developed for studies with the external noise paradigm are strictly applicable only to target detection or identification/discrimination of orthogonal target(s). We elaborated the perceptual template model (PTM) to account for contrast thresholds in identifying nonorthogonal targets. Full contrast psychometric functions were measured in an orientation identification task with four orientation differences across a wide range of external noise levels. We showed that observer performance can be modeled by the elaborated PTM with two templates that correspond to the two stimulus categories. Sampling efficiencies of the human observers were also estimated. The elaborated PTM provides a theoretical framework for characterizing joint feature and contrast sensitivity of human observers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Itti, C. Koch, and J. Braun, “Revisiting spatial vision: toward a unifying model,” J. Opt. Soc. Am. A 17, 1899-1917 (2000).
    [CrossRef]
  2. A. E. Burgess and B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617-627 (1988).
    [CrossRef] [PubMed]
  3. M. P. Eckstein, A. J. Ahumada, and A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406-2419 (1997).
    [CrossRef]
  4. D. Pelli, “Effects of visual noise,” Ph.D. dissertation (Cambridge Univ. 1981).
  5. Z.-L. Lu and B. A. Dosher, “Characterizing human perceptual inefficiencies with equivalent internal noise,” J. Opt. Soc. Am. A 16, 764-778 (1999).
    [CrossRef]
  6. Z. L. Lu and B. A. Dosher, “Characterizing observers using noise and observer models: assessing internal representations with external noise,” Psychol. Rev. 115, 44-82 (2008).
    [CrossRef] [PubMed]
  7. D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665-672 (1975).
    [CrossRef] [PubMed]
  8. D. H. Kelly, “Motion and vision. II. Stabilized spatio-temporal threshold surface,” J. Opt. Soc. Am. 69, 1340-1349 (1979).
    [CrossRef] [PubMed]
  9. J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns. IV. The influence of the mean retinal illuminance,” J. Opt. Soc. Am. 68, 860-865 (1978).
    [CrossRef] [PubMed]
  10. A. B. Watson, “Estimation of local spatial scale,” J. Opt. Soc. Am. A 4, 1579-1582 (1987).
    [CrossRef] [PubMed]
  11. J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495-510 (1979).
    [CrossRef] [PubMed]
  12. J. Rovamo, V. Virsu, and R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54-56 (1978).
    [CrossRef] [PubMed]
  13. G. T. Plant, “Temporal properties of normal and abnormal spatial vision,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 43-63.
  14. D. Regan, “Spatiotemporal abnormalities of vision in patients with multiple sclerosis,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 239-249.
  15. R. F. Hess and E. R. Howell, “The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification,” Vision Res. 17, 1049-1055 (1977).
    [CrossRef] [PubMed]
  16. J. P. Thomas and J. Gille, “Bandwidths of orientation channels in human vision,” J. Opt. Soc. Am. 69, 652-660 (1979).
    [CrossRef] [PubMed]
  17. V. Virsu and J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475-494 (1979).
    [CrossRef] [PubMed]
  18. B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987).
    [PubMed]
  19. B. G. Smith and J. P. Thomas, “Why are some spatial discriminations independent of contrast?” J. Opt. Soc. Am. A 6, 713-724 (1989).
    [CrossRef] [PubMed]
  20. S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449-461 (1990).
    [CrossRef] [PubMed]
  21. P. Vazquez, M. Cano, and C. Acuna, “Discrimination of line orientation in humans and monkeys,” J. Neurophysiol. 83, 2639-2648 (2000).
    [PubMed]
  22. D. G. Pelli and B. Farell, “Why use noise?” J. Opt. Soc. Am. A 16, 647-653 (1999).
    [CrossRef]
  23. D. M. Green, “Consistency of auditory detection judgments,” Psychol. Rev. 71, 392-407 (1964).
    [CrossRef] [PubMed]
  24. J. A. J. Ahumada and A. B. Watson, “Equivalent-noise model for contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1133-1139 (1985).
    [CrossRef] [PubMed]
  25. L. Kiorpes and J. A. Movshon, “Peripheral and central factors limiting the development of contrast sensitivity in Macaque monkeys,” Vision Res. 38, 61-70 (1998).
    [CrossRef] [PubMed]
  26. D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C.Blakemore, ed. (Cambridge Univ. Press, 1990), pp. 3-24.
  27. H. Fletcher, “Auditory patterns,” Rev. Mod. Phys. 12, 47-65 (1940).
    [CrossRef]
  28. H. B. Barlow, “Retinal noise and absolute threshold,” J. Opt. Soc. Am. 46, 634-639 (1956).
    [CrossRef] [PubMed]
  29. G. E. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391-404 (1987).
    [CrossRef] [PubMed]
  30. N. S. Nagaraja, “Effect of luminance noise on contrast thresholds,” J. Opt. Soc. Am. 54, 950-955 (1964).
    [CrossRef]
  31. A. J. Ahumada and J. Lovell, “Stimulus features in signal detection,” J. Acoust. Soc. Am. 49, 1751-1756 (1971).
    [CrossRef]
  32. H. T. Friis, “Noise figures of radio receivers,” Proc. IRE 32, 419-422 (1944).
    [CrossRef]
  33. W. W. Mumford and E. H. Schelbe, Noise Performance Factors in Communication Systems (Horizon House-Microwave Inc., 1968).
  34. D. O. North, “The absolute sensitivity of radio receivers,” RCA Rev. 6, 332-344 (1942).
  35. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93-94 (1981).
    [CrossRef] [PubMed]
  36. C. E. Bos and E. Deboer, “Masking and discrimination,” J. Acoust. Soc. Am. 39, 708-& (1966).
    [CrossRef]
  37. E. Eijkman, J. M. Thijssen, and A. J. Vendrik, “Weber's law, power law, and internal noise,” J. Acoust. Soc. Am. 40, 1164-1173 (1966).
    [CrossRef] [PubMed]
  38. W. M. Hartmann and J. Pumplin, “Noise power fluctuations and the masking of sine signals,” J. Acoust. Soc. Am. 83, 2277-2289 (1988).
    [CrossRef] [PubMed]
  39. L. E. Humes and W. Jesteadt, “Models of the additivity of masking,” J. Acoust. Soc. Am. 85, 1285-1294 (1989).
    [CrossRef] [PubMed]
  40. B. C. J. Moore, “Mechanisms of masking,” J. Acoust. Soc. Am. 57, 391-399 (1975).
    [CrossRef] [PubMed]
  41. E. Osman, “A correlation model of binaural masking level differences,” J. Acoust. Soc. Am. 50, 1494-1511 (1971).
    [CrossRef]
  42. V. M. Richards, L. M. Heller, and D. M. Green, “The detection of a tone added to a narrow band of noise: the energy model revisited,” Q. J. Exp. Psychol. 43, 481-501 (1991).
    [CrossRef]
  43. A. J. Ahumada, “Putting the visual system noise back in the picture,” J. Opt. Soc. Am. A 4, 2372-2378 (1987).
    [CrossRef] [PubMed]
  44. M. D'Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117-3128 (1998).
    [CrossRef]
  45. K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880-1888 (1992).
    [CrossRef] [PubMed]
  46. W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267-314 (1989).
    [CrossRef] [PubMed]
  47. G. A. Hay and M. S. Chesters, “Signal-transfer functions in threshold and suprathreshold vision,” J. Opt. Soc. Am. 62, 990-998 (1972).
    [CrossRef] [PubMed]
  48. Z.-L. Lu and B. A. Dosher, “Characterizing the spatial-frequency sensitivity of perceptual templates,” J. Opt. Soc. Am. A 18, 2041-2053 (2001).
    [CrossRef]
  49. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. A 38, 196-208 (1948).
    [CrossRef]
  50. W. P. Tanner, Jr., and T. G. Birdsall, “Definitions of d′ and n as psychophysical measures,” J. Acoust. Soc. Am. 30, 922-928 (1958).
    [CrossRef]
  51. B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995).
    [CrossRef] [PubMed]
  52. A. Van Meeteren and H. B. Barlow, “The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures,” Vision Res. 21, 765-777 (1981).
    [CrossRef] [PubMed]
  53. Z.-L. Lu and B. A. Dosher, “External noise distinguishes attention mechanisms,” Vision Res. 38, 1183-1198 (1998).
    [CrossRef] [PubMed]
  54. B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual attention in precuing of location,” Vision Res. 40, 1269-1292 (2000).
    [CrossRef] [PubMed]
  55. B. A. Dosher and Z.-L. Lu, “Noise exclusion in spatial attention,” Psychol. Sci. 11, 139-146 (2000).
    [CrossRef]
  56. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508-1531 (1985).
    [CrossRef] [PubMed]
  57. J. Nachmias and R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039-1042 (1974).
    [CrossRef] [PubMed]
  58. J. M. Foley and G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041-1053 (1981).
    [CrossRef] [PubMed]
  59. G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458-1471 (1980).
    [CrossRef] [PubMed]
  60. S. A. Klein and D. M. Levi, “Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation,” J. Opt. Soc. Am. A 2, 1170-1190 (1985).
    [CrossRef] [PubMed]
  61. J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710-1719 (1994).
    [CrossRef]
  62. A. B. Watson and J. A. Solomon, “Model of visual contrast gain control and pattern masking,” J. Opt. Soc. Am. A 14, 2379-2391 (1997).
    [CrossRef]
  63. A. Gorea and D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nat. Neurosci. 4, 1146-1150 (2001).
    [CrossRef] [PubMed]
  64. R. E. Fredericksen and R. F. Hess, “Temporal detection in human vision: Dependence on stimulus energy,” J. Opt. Soc. Am. A 14, 2557-2569 (1997).
    [CrossRef]
  65. L. L. Kontsevich, C. C. Chen, and C. W. Tyler, “Separating the effects of response nonlinearity and internal noise psychophysically,” Vision Res. 42, 1771-1784 (2002).
    [CrossRef] [PubMed]
  66. L. A. Olzak and J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231-256 (1999).
    [CrossRef] [PubMed]
  67. L. Itti, J. Braun, and C. Koch, “Modelling the modulatory effect of attention on human spatial vision,” in Advances in Neural Information Processing Systems, T.G.Ditterich, S.Becker, and Z.Ghahramani, eds. (MIT Press, 2002), pp. 1247-1254.
  68. J. A. Solomon and M. J. Morgan, “Stochastic re-calibration: contextual effects on perceived tilt,” Proc. R. Soc., London, Ser. B 273, 2681-2686 (2006).
    [CrossRef]
  69. D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433-436 (1997).
    [CrossRef]
  70. X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003).
    [CrossRef] [PubMed]
  71. Z. L. Lu and G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075-1088 (1999).
    [CrossRef] [PubMed]
  72. F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001).
    [CrossRef]
  73. JS could not perform better than 85% correct in the highest external noise condition in some of the orientation difference conditions. We excluded his data in that condition in all the analysis.
  74. L. T. Maloney, “Confidence Intervals for the parameters of psychometric functions,” Percept. Psychophys. 47, 127-134 (1990).
    [CrossRef] [PubMed]
  75. D. P. Andrews, “Perception of contours in the central fovea,” Nature 205, 1218-1220 (1965).
    [CrossRef]
  76. W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775-782 (1984).
    [CrossRef] [PubMed]
  77. Dosher and Lu (2000) showed that the stochastic PTM exhibits all the key characteristics derived for the simplified (analytic) PTM. In general, the analytic PTM is a close approximation to the stochastic PTM and provides a good approach to model testing: The (analytic) PTM fits all the data we have collected very well. In the special case when γ = 1.0, the (analytic) PTM is identical to the stochastic PTM. In the two extreme regions of the external noise manipulation, i. e., when internal additive noise dominates or when external noise dominates, the (analytic) PTM model approaches the stochastic model asymptotically.
  78. In the ePTM development, the external noise in the stimulus had a Gaussian distribution, corresponding to white external noise. After nonlinear transduction, the distribution of the external noise might deviate from the Gaussian distribution. Spatial and temporal summation in the perceptual system should reduce this deviation. When combined with additive and multiplicative noises, both of which are Gaussian distributed, we assume that the sum of the noises is approximately Gaussian. However, we restrict ourselves to performance levels below 90% so as to avoid the tails of the distribution. The Gaussian assumption is not central to the development of the PTM outlined above, but it does simplify the application to signal detection estimation: the Gaussian noise distribution allows us to use the Gaussian form of signal detection calculations.
  79. For a Gaussian random variable R with mean 0 and standard deviation NextσTN, the standard deviation of sign(R)abs(R)γ1 is Nextγ1σTNγ1Fγ1(γ1)...F(γ1)=1.00, 1.07, 1.14, 1.20, 1.26, 1.32, 1.37, 1.42, 1.47, 1.52, and 1.57, for = 1.0, 1.2, ..., 3.0.
  80. B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vision Res. 39, 3197-3221 (1999).
    [CrossRef] [PubMed]
  81. Z.-L. Lu and B. A. Dosher, “Spatial attention: Different mechanisms for central and peripheral temporal precues?” J. Exp. Psychol. 26, 1534-1548 (2000).
  82. G. Westheimer and E. J. Ley, “Spatial and Temporal Integration of Signals in Foveal Line Orientation,” J. Neurophysiol. 77, 2677-2684 (1997).
    [PubMed]
  83. This logic could be extended to consider more than two templates with an appropriate decision rule for identification tasks with more than two stimuli.
  84. D. H. Parish and G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, an the efficiency of letter discrimination,” Vision Res. 31, 1399-1415 (1991).
    [CrossRef] [PubMed]
  85. M. J. Morgan, “Hyperacuity,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 87-113.
  86. B. L. Beard and J. A. J. Ahumada, “Detection in fixed and random noise in foveal and parafoveal vision explained by template learning,” J. Opt. Soc. Am. A 16, 755-763 (1999).
    [CrossRef]
  87. B. A. Dosher, S.-H. Liu, N. Blair, and Z.-L. Lu, “The spatial window of the perceptual template and endogenous attention,” Vision Res. 44, 1257-1271 (2004).
    [CrossRef] [PubMed]
  88. A. Burgess, “Effect of quantization noise on visual signal detection in noisy images,” J. Opt. Soc. Am. A 2, 1424-1428 (1985).
    [CrossRef] [PubMed]
  89. J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395-397 (1994).
    [CrossRef] [PubMed]
  90. R. L. De Valois, E. William Yund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531-544 (1982).
    [CrossRef] [PubMed]
  91. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).
  92. A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987).
    [PubMed]
  93. F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).
  94. P. Makela, D. Whitaker, and J. Rovamo, “Modelling of orientation discrimination across the visual field,” Vision Res. 33, 723-730 (1993).
    [CrossRef] [PubMed]
  95. S. J. Waugh, D. M. Levi, and T. Carney, “Orientation, masking, and vernier acuity for line targets,” Vision Res. 33, 1619-1638 (1993).
    [CrossRef] [PubMed]
  96. G. Westheimer, “Visual hyperacuity,” in Progress in Sensory Physiology, D.Ottoson, ed. (Springer, 1981), pp. 1-30.
    [CrossRef]
  97. J. Beck and T. Halloran, “Effects of spatial separation and retinal eccentricity on two-dot vernier acuity,” Vision Res. 25, 1105-1111 (1985).
    [CrossRef] [PubMed]
  98. D. Regan and K. I. Beverley, “Postadaptation orientation discrimination,” J. Opt. Soc. Am. A 2, 147-155 (1985).
    [CrossRef] [PubMed]
  99. G. Westheimer, K. Shimamura, and S. P. McKee, “Interference with line-orientation sensitivity,” J. Opt. Soc. Am. 66, 332-338 (1976).
    [CrossRef] [PubMed]
  100. H. R. Wilson and D. J. Gelb, “Modified line-element theory for spatial-frequency and width discrimination,” J. Opt. Soc. Am. A 1, 124-131 (1984).
    [CrossRef] [PubMed]
  101. H. R. Wilson and D. Regan, “Spatial-frequency adaptation and grating discrimination: predictions of a line-element model,” J. Opt. Soc. Am. A 1, 1091-1096 (1984).
    [CrossRef] [PubMed]
  102. R. Vogels and G. A. Orban, “How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey,” J. Neurosci. 10, 3543-3558 (1990).
    [PubMed]

2008 (1)

Z. L. Lu and B. A. Dosher, “Characterizing observers using noise and observer models: assessing internal representations with external noise,” Psychol. Rev. 115, 44-82 (2008).
[CrossRef] [PubMed]

2006 (1)

J. A. Solomon and M. J. Morgan, “Stochastic re-calibration: contextual effects on perceived tilt,” Proc. R. Soc., London, Ser. B 273, 2681-2686 (2006).
[CrossRef]

2004 (1)

B. A. Dosher, S.-H. Liu, N. Blair, and Z.-L. Lu, “The spatial window of the perceptual template and endogenous attention,” Vision Res. 44, 1257-1271 (2004).
[CrossRef] [PubMed]

2003 (1)

X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003).
[CrossRef] [PubMed]

2002 (1)

L. L. Kontsevich, C. C. Chen, and C. W. Tyler, “Separating the effects of response nonlinearity and internal noise psychophysically,” Vision Res. 42, 1771-1784 (2002).
[CrossRef] [PubMed]

2001 (3)

A. Gorea and D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nat. Neurosci. 4, 1146-1150 (2001).
[CrossRef] [PubMed]

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

Z.-L. Lu and B. A. Dosher, “Characterizing the spatial-frequency sensitivity of perceptual templates,” J. Opt. Soc. Am. A 18, 2041-2053 (2001).
[CrossRef]

2000 (5)

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual attention in precuing of location,” Vision Res. 40, 1269-1292 (2000).
[CrossRef] [PubMed]

B. A. Dosher and Z.-L. Lu, “Noise exclusion in spatial attention,” Psychol. Sci. 11, 139-146 (2000).
[CrossRef]

L. Itti, C. Koch, and J. Braun, “Revisiting spatial vision: toward a unifying model,” J. Opt. Soc. Am. A 17, 1899-1917 (2000).
[CrossRef]

P. Vazquez, M. Cano, and C. Acuna, “Discrimination of line orientation in humans and monkeys,” J. Neurophysiol. 83, 2639-2648 (2000).
[PubMed]

Z.-L. Lu and B. A. Dosher, “Spatial attention: Different mechanisms for central and peripheral temporal precues?” J. Exp. Psychol. 26, 1534-1548 (2000).

1999 (5)

1998 (3)

Z.-L. Lu and B. A. Dosher, “External noise distinguishes attention mechanisms,” Vision Res. 38, 1183-1198 (1998).
[CrossRef] [PubMed]

M. D'Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117-3128 (1998).
[CrossRef]

L. Kiorpes and J. A. Movshon, “Peripheral and central factors limiting the development of contrast sensitivity in Macaque monkeys,” Vision Res. 38, 61-70 (1998).
[CrossRef] [PubMed]

1997 (5)

1995 (1)

B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995).
[CrossRef] [PubMed]

1994 (2)

J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710-1719 (1994).
[CrossRef]

J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

1993 (2)

P. Makela, D. Whitaker, and J. Rovamo, “Modelling of orientation discrimination across the visual field,” Vision Res. 33, 723-730 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, and T. Carney, “Orientation, masking, and vernier acuity for line targets,” Vision Res. 33, 1619-1638 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (2)

V. M. Richards, L. M. Heller, and D. M. Green, “The detection of a tone added to a narrow band of noise: the energy model revisited,” Q. J. Exp. Psychol. 43, 481-501 (1991).
[CrossRef]

D. H. Parish and G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, an the efficiency of letter discrimination,” Vision Res. 31, 1399-1415 (1991).
[CrossRef] [PubMed]

1990 (3)

R. Vogels and G. A. Orban, “How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey,” J. Neurosci. 10, 3543-3558 (1990).
[PubMed]

L. T. Maloney, “Confidence Intervals for the parameters of psychometric functions,” Percept. Psychophys. 47, 127-134 (1990).
[CrossRef] [PubMed]

S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449-461 (1990).
[CrossRef] [PubMed]

1989 (3)

L. E. Humes and W. Jesteadt, “Models of the additivity of masking,” J. Acoust. Soc. Am. 85, 1285-1294 (1989).
[CrossRef] [PubMed]

B. G. Smith and J. P. Thomas, “Why are some spatial discriminations independent of contrast?” J. Opt. Soc. Am. A 6, 713-724 (1989).
[CrossRef] [PubMed]

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267-314 (1989).
[CrossRef] [PubMed]

1988 (2)

A. E. Burgess and B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617-627 (1988).
[CrossRef] [PubMed]

W. M. Hartmann and J. Pumplin, “Noise power fluctuations and the masking of sine signals,” J. Acoust. Soc. Am. 83, 2277-2289 (1988).
[CrossRef] [PubMed]

1987 (5)

G. E. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391-404 (1987).
[CrossRef] [PubMed]

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987).
[PubMed]

A. B. Watson, “Estimation of local spatial scale,” J. Opt. Soc. Am. A 4, 1579-1582 (1987).
[CrossRef] [PubMed]

A. J. Ahumada, “Putting the visual system noise back in the picture,” J. Opt. Soc. Am. A 4, 2372-2378 (1987).
[CrossRef] [PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987).
[PubMed]

1985 (6)

1984 (3)

1982 (1)

R. L. De Valois, E. William Yund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531-544 (1982).
[CrossRef] [PubMed]

1981 (3)

J. M. Foley and G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041-1053 (1981).
[CrossRef] [PubMed]

A. Van Meeteren and H. B. Barlow, “The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures,” Vision Res. 21, 765-777 (1981).
[CrossRef] [PubMed]

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93-94 (1981).
[CrossRef] [PubMed]

1980 (1)

1979 (4)

J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495-510 (1979).
[CrossRef] [PubMed]

J. P. Thomas and J. Gille, “Bandwidths of orientation channels in human vision,” J. Opt. Soc. Am. 69, 652-660 (1979).
[CrossRef] [PubMed]

V. Virsu and J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475-494 (1979).
[CrossRef] [PubMed]

D. H. Kelly, “Motion and vision. II. Stabilized spatio-temporal threshold surface,” J. Opt. Soc. Am. 69, 1340-1349 (1979).
[CrossRef] [PubMed]

1978 (2)

1977 (1)

R. F. Hess and E. R. Howell, “The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification,” Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

1976 (1)

1975 (2)

D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665-672 (1975).
[CrossRef] [PubMed]

B. C. J. Moore, “Mechanisms of masking,” J. Acoust. Soc. Am. 57, 391-399 (1975).
[CrossRef] [PubMed]

1974 (1)

J. Nachmias and R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

1972 (1)

1971 (2)

E. Osman, “A correlation model of binaural masking level differences,” J. Acoust. Soc. Am. 50, 1494-1511 (1971).
[CrossRef]

A. J. Ahumada and J. Lovell, “Stimulus features in signal detection,” J. Acoust. Soc. Am. 49, 1751-1756 (1971).
[CrossRef]

1966 (3)

C. E. Bos and E. Deboer, “Masking and discrimination,” J. Acoust. Soc. Am. 39, 708-& (1966).
[CrossRef]

E. Eijkman, J. M. Thijssen, and A. J. Vendrik, “Weber's law, power law, and internal noise,” J. Acoust. Soc. Am. 40, 1164-1173 (1966).
[CrossRef] [PubMed]

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

1965 (1)

D. P. Andrews, “Perception of contours in the central fovea,” Nature 205, 1218-1220 (1965).
[CrossRef]

1964 (2)

D. M. Green, “Consistency of auditory detection judgments,” Psychol. Rev. 71, 392-407 (1964).
[CrossRef] [PubMed]

N. S. Nagaraja, “Effect of luminance noise on contrast thresholds,” J. Opt. Soc. Am. 54, 950-955 (1964).
[CrossRef]

1962 (1)

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).

1958 (1)

W. P. Tanner, Jr., and T. G. Birdsall, “Definitions of d′ and n as psychophysical measures,” J. Acoust. Soc. Am. 30, 922-928 (1958).
[CrossRef]

1956 (1)

1948 (1)

A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. A 38, 196-208 (1948).
[CrossRef]

1944 (1)

H. T. Friis, “Noise figures of radio receivers,” Proc. IRE 32, 419-422 (1944).
[CrossRef]

1942 (1)

D. O. North, “The absolute sensitivity of radio receivers,” RCA Rev. 6, 332-344 (1942).

1940 (1)

H. Fletcher, “Auditory patterns,” Rev. Mod. Phys. 12, 47-65 (1940).
[CrossRef]

Acuna, C.

P. Vazquez, M. Cano, and C. Acuna, “Discrimination of line orientation in humans and monkeys,” J. Neurophysiol. 83, 2639-2648 (2000).
[PubMed]

Ahumada, A. J.

Ahumada, J. A. J.

Andrews, D. P.

D. P. Andrews, “Perception of contours in the central fovea,” Nature 205, 1218-1220 (1965).
[CrossRef]

Barlow, H. B.

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93-94 (1981).
[CrossRef] [PubMed]

A. Van Meeteren and H. B. Barlow, “The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures,” Vision Res. 21, 765-777 (1981).
[CrossRef] [PubMed]

H. B. Barlow, “Retinal noise and absolute threshold,” J. Opt. Soc. Am. 46, 634-639 (1956).
[CrossRef] [PubMed]

Beard, B. L.

Beck, J.

J. Beck and T. Halloran, “Effects of spatial separation and retinal eccentricity on two-dot vernier acuity,” Vision Res. 25, 1105-1111 (1985).
[CrossRef] [PubMed]

Beverley, K. I.

Birdsall, T. G.

W. P. Tanner, Jr., and T. G. Birdsall, “Definitions of d′ and n as psychophysical measures,” J. Acoust. Soc. Am. 30, 922-928 (1958).
[CrossRef]

Blair, N.

B. A. Dosher, S.-H. Liu, N. Blair, and Z.-L. Lu, “The spatial window of the perceptual template and endogenous attention,” Vision Res. 44, 1257-1271 (2004).
[CrossRef] [PubMed]

Bos, C. E.

C. E. Bos and E. Deboer, “Masking and discrimination,” J. Acoust. Soc. Am. 39, 708-& (1966).
[CrossRef]

Bouman, M. A.

Bowne, S. F.

S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449-461 (1990).
[CrossRef] [PubMed]

Bradley, A.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987).
[PubMed]

Brainard, D. H.

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433-436 (1997).
[CrossRef]

Braje, W. L.

B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995).
[CrossRef] [PubMed]

Braun, J.

L. Itti, C. Koch, and J. Braun, “Revisiting spatial vision: toward a unifying model,” J. Opt. Soc. Am. A 17, 1899-1917 (2000).
[CrossRef]

L. Itti, J. Braun, and C. Koch, “Modelling the modulatory effect of attention on human spatial vision,” in Advances in Neural Information Processing Systems, T.G.Ditterich, S.Becker, and Z.Ghahramani, eds. (MIT Press, 2002), pp. 1247-1254.

Bueno de Mesquita, A. E.

Burgess, A.

Burgess, A. E.

Campbell, F. W.

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

Cano, M.

P. Vazquez, M. Cano, and C. Acuna, “Discrimination of line orientation in humans and monkeys,” J. Neurophysiol. 83, 2639-2648 (2000).
[PubMed]

Carney, T.

S. J. Waugh, D. M. Levi, and T. Carney, “Orientation, masking, and vernier acuity for line targets,” Vision Res. 33, 1619-1638 (1993).
[CrossRef] [PubMed]

Chen, C. C.

L. L. Kontsevich, C. C. Chen, and C. W. Tyler, “Separating the effects of response nonlinearity and internal noise psychophysically,” Vision Res. 42, 1771-1784 (2002).
[CrossRef] [PubMed]

Chesters, M. S.

Colborne, B.

De Valois, R. L.

R. L. De Valois, E. William Yund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531-544 (1982).
[CrossRef] [PubMed]

Deboer, E.

C. E. Bos and E. Deboer, “Masking and discrimination,” J. Acoust. Soc. Am. 39, 708-& (1966).
[CrossRef]

Dosher,

Dosher and Lu (2000) showed that the stochastic PTM exhibits all the key characteristics derived for the simplified (analytic) PTM. In general, the analytic PTM is a close approximation to the stochastic PTM and provides a good approach to model testing: The (analytic) PTM fits all the data we have collected very well. In the special case when γ = 1.0, the (analytic) PTM is identical to the stochastic PTM. In the two extreme regions of the external noise manipulation, i. e., when internal additive noise dominates or when external noise dominates, the (analytic) PTM model approaches the stochastic model asymptotically.

Dosher, B. A.

Z. L. Lu and B. A. Dosher, “Characterizing observers using noise and observer models: assessing internal representations with external noise,” Psychol. Rev. 115, 44-82 (2008).
[CrossRef] [PubMed]

B. A. Dosher, S.-H. Liu, N. Blair, and Z.-L. Lu, “The spatial window of the perceptual template and endogenous attention,” Vision Res. 44, 1257-1271 (2004).
[CrossRef] [PubMed]

Z.-L. Lu and B. A. Dosher, “Characterizing the spatial-frequency sensitivity of perceptual templates,” J. Opt. Soc. Am. A 18, 2041-2053 (2001).
[CrossRef]

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual attention in precuing of location,” Vision Res. 40, 1269-1292 (2000).
[CrossRef] [PubMed]

B. A. Dosher and Z.-L. Lu, “Noise exclusion in spatial attention,” Psychol. Sci. 11, 139-146 (2000).
[CrossRef]

Z.-L. Lu and B. A. Dosher, “Spatial attention: Different mechanisms for central and peripheral temporal precues?” J. Exp. Psychol. 26, 1534-1548 (2000).

Z.-L. Lu and B. A. Dosher, “Characterizing human perceptual inefficiencies with equivalent internal noise,” J. Opt. Soc. Am. A 16, 764-778 (1999).
[CrossRef]

Z.-L. Lu and B. A. Dosher, “External noise distinguishes attention mechanisms,” Vision Res. 38, 1183-1198 (1998).
[CrossRef] [PubMed]

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vision Res. 39, 3197-3221 (1999).
[CrossRef] [PubMed]

D'Zmura, M.

M. D'Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117-3128 (1998).
[CrossRef]

Eckstein, M. P.

Eijkman, E.

E. Eijkman, J. M. Thijssen, and A. J. Vendrik, “Weber's law, power law, and internal noise,” J. Acoust. Soc. Am. 40, 1164-1173 (1966).
[CrossRef] [PubMed]

Farell, B.

Fletcher, H.

H. Fletcher, “Auditory patterns,” Rev. Mod. Phys. 12, 47-65 (1940).
[CrossRef]

Foley, J. M.

Fredericksen, R. E.

Freeman, R. D.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987).
[PubMed]

Friis, H. T.

H. T. Friis, “Noise figures of radio receivers,” Proc. IRE 32, 419-422 (1944).
[CrossRef]

Gegenfurtner, K. R.

Geisler, W. S.

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267-314 (1989).
[CrossRef] [PubMed]

W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775-782 (1984).
[CrossRef] [PubMed]

Gelb, D. J.

Gille, J.

Gorea, A.

A. Gorea and D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nat. Neurosci. 4, 1146-1150 (2001).
[CrossRef] [PubMed]

Green, D. M.

V. M. Richards, L. M. Heller, and D. M. Green, “The detection of a tone added to a narrow band of noise: the energy model revisited,” Q. J. Exp. Psychol. 43, 481-501 (1991).
[CrossRef]

D. M. Green, “Consistency of auditory detection judgments,” Psychol. Rev. 71, 392-407 (1964).
[CrossRef] [PubMed]

Halloran, T.

J. Beck and T. Halloran, “Effects of spatial separation and retinal eccentricity on two-dot vernier acuity,” Vision Res. 25, 1105-1111 (1985).
[CrossRef] [PubMed]

Hartmann, W. M.

W. M. Hartmann and J. Pumplin, “Noise power fluctuations and the masking of sine signals,” J. Acoust. Soc. Am. 83, 2277-2289 (1988).
[CrossRef] [PubMed]

Hay, G. A.

Heller, L. M.

V. M. Richards, L. M. Heller, and D. M. Green, “The detection of a tone added to a narrow band of noise: the energy model revisited,” Q. J. Exp. Psychol. 43, 481-501 (1991).
[CrossRef]

Hepler, N.

R. L. De Valois, E. William Yund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531-544 (1982).
[CrossRef] [PubMed]

Hess, R. F.

R. E. Fredericksen and R. F. Hess, “Temporal detection in human vision: Dependence on stimulus energy,” J. Opt. Soc. Am. A 14, 2557-2569 (1997).
[CrossRef]

R. F. Hess and E. R. Howell, “The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification,” Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

Hill, N. J.

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

Howell, E. R.

R. F. Hess and E. R. Howell, “The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification,” Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).

Humes, L. E.

L. E. Humes and W. Jesteadt, “Models of the additivity of masking,” J. Acoust. Soc. Am. 85, 1285-1294 (1989).
[CrossRef] [PubMed]

Itti, L.

L. Itti, C. Koch, and J. Braun, “Revisiting spatial vision: toward a unifying model,” J. Opt. Soc. Am. A 17, 1899-1917 (2000).
[CrossRef]

L. Itti, J. Braun, and C. Koch, “Modelling the modulatory effect of attention on human spatial vision,” in Advances in Neural Information Processing Systems, T.G.Ditterich, S.Becker, and Z.Ghahramani, eds. (MIT Press, 2002), pp. 1247-1254.

Jennings, R. J.

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93-94 (1981).
[CrossRef] [PubMed]

Jesteadt, W.

L. E. Humes and W. Jesteadt, “Models of the additivity of masking,” J. Acoust. Soc. Am. 85, 1285-1294 (1989).
[CrossRef] [PubMed]

Jin, J.

X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003).
[CrossRef] [PubMed]

Kelly, D. H.

Kersten, D.

B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995).
[CrossRef] [PubMed]

G. E. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391-404 (1987).
[CrossRef] [PubMed]

Kiorpes, L.

L. Kiorpes and J. A. Movshon, “Peripheral and central factors limiting the development of contrast sensitivity in Macaque monkeys,” Vision Res. 38, 61-70 (1998).
[CrossRef] [PubMed]

Kiper, D. C.

Klein, S. A.

Knoblauch, K.

M. D'Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117-3128 (1998).
[CrossRef]

Koch, C.

L. Itti, C. Koch, and J. Braun, “Revisiting spatial vision: toward a unifying model,” J. Opt. Soc. Am. A 17, 1899-1917 (2000).
[CrossRef]

L. Itti, J. Braun, and C. Koch, “Modelling the modulatory effect of attention on human spatial vision,” in Advances in Neural Information Processing Systems, T.G.Ditterich, S.Becker, and Z.Ghahramani, eds. (MIT Press, 2002), pp. 1247-1254.

Koenderink, J. J.

Kontsevich, L. L.

L. L. Kontsevich, C. C. Chen, and C. W. Tyler, “Separating the effects of response nonlinearity and internal noise psychophysically,” Vision Res. 42, 1771-1784 (2002).
[CrossRef] [PubMed]

Kulikowski, J. J.

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

Legge, G. E.

B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995).
[CrossRef] [PubMed]

G. E. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391-404 (1987).
[CrossRef] [PubMed]

J. M. Foley and G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041-1053 (1981).
[CrossRef] [PubMed]

G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458-1471 (1980).
[CrossRef] [PubMed]

Levi, D. M.

S. J. Waugh, D. M. Levi, and T. Carney, “Orientation, masking, and vernier acuity for line targets,” Vision Res. 33, 1619-1638 (1993).
[CrossRef] [PubMed]

S. A. Klein and D. M. Levi, “Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation,” J. Opt. Soc. Am. A 2, 1170-1190 (1985).
[CrossRef] [PubMed]

Ley, E. J.

G. Westheimer and E. J. Ley, “Spatial and Temporal Integration of Signals in Foveal Line Orientation,” J. Neurophysiol. 77, 2677-2684 (1997).
[PubMed]

Li, X.

X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003).
[CrossRef] [PubMed]

Liu, S.-H.

B. A. Dosher, S.-H. Liu, N. Blair, and Z.-L. Lu, “The spatial window of the perceptual template and endogenous attention,” Vision Res. 44, 1257-1271 (2004).
[CrossRef] [PubMed]

Lovell, J.

A. J. Ahumada and J. Lovell, “Stimulus features in signal detection,” J. Acoust. Soc. Am. 49, 1751-1756 (1971).
[CrossRef]

Lu,

Dosher and Lu (2000) showed that the stochastic PTM exhibits all the key characteristics derived for the simplified (analytic) PTM. In general, the analytic PTM is a close approximation to the stochastic PTM and provides a good approach to model testing: The (analytic) PTM fits all the data we have collected very well. In the special case when γ = 1.0, the (analytic) PTM is identical to the stochastic PTM. In the two extreme regions of the external noise manipulation, i. e., when internal additive noise dominates or when external noise dominates, the (analytic) PTM model approaches the stochastic model asymptotically.

Lu, Z. L.

Z. L. Lu and B. A. Dosher, “Characterizing observers using noise and observer models: assessing internal representations with external noise,” Psychol. Rev. 115, 44-82 (2008).
[CrossRef] [PubMed]

Z. L. Lu and G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075-1088 (1999).
[CrossRef] [PubMed]

Lu, Z.-L.

B. A. Dosher, S.-H. Liu, N. Blair, and Z.-L. Lu, “The spatial window of the perceptual template and endogenous attention,” Vision Res. 44, 1257-1271 (2004).
[CrossRef] [PubMed]

X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003).
[CrossRef] [PubMed]

Z.-L. Lu and B. A. Dosher, “Characterizing the spatial-frequency sensitivity of perceptual templates,” J. Opt. Soc. Am. A 18, 2041-2053 (2001).
[CrossRef]

B. A. Dosher and Z.-L. Lu, “Noise exclusion in spatial attention,” Psychol. Sci. 11, 139-146 (2000).
[CrossRef]

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual attention in precuing of location,” Vision Res. 40, 1269-1292 (2000).
[CrossRef] [PubMed]

Z.-L. Lu and B. A. Dosher, “Spatial attention: Different mechanisms for central and peripheral temporal precues?” J. Exp. Psychol. 26, 1534-1548 (2000).

Z.-L. Lu and B. A. Dosher, “Characterizing human perceptual inefficiencies with equivalent internal noise,” J. Opt. Soc. Am. A 16, 764-778 (1999).
[CrossRef]

Z.-L. Lu and B. A. Dosher, “External noise distinguishes attention mechanisms,” Vision Res. 38, 1183-1198 (1998).
[CrossRef] [PubMed]

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vision Res. 39, 3197-3221 (1999).
[CrossRef] [PubMed]

Makela, P.

P. Makela, D. Whitaker, and J. Rovamo, “Modelling of orientation discrimination across the visual field,” Vision Res. 33, 723-730 (1993).
[CrossRef] [PubMed]

Maloney, L. T.

L. T. Maloney, “Confidence Intervals for the parameters of psychometric functions,” Percept. Psychophys. 47, 127-134 (1990).
[CrossRef] [PubMed]

McKee, S. P.

Moore, B. C. J.

B. C. J. Moore, “Mechanisms of masking,” J. Acoust. Soc. Am. 57, 391-399 (1975).
[CrossRef] [PubMed]

Morgan, M. J.

J. A. Solomon and M. J. Morgan, “Stochastic re-calibration: contextual effects on perceived tilt,” Proc. R. Soc., London, Ser. B 273, 2681-2686 (2006).
[CrossRef]

M. J. Morgan, “Hyperacuity,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 87-113.

Movshon, J. A.

L. Kiorpes and J. A. Movshon, “Peripheral and central factors limiting the development of contrast sensitivity in Macaque monkeys,” Vision Res. 38, 61-70 (1998).
[CrossRef] [PubMed]

Mumford, W. W.

W. W. Mumford and E. H. Schelbe, Noise Performance Factors in Communication Systems (Horizon House-Microwave Inc., 1968).

Nachmias, J.

J. Nachmias and R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

Nagaraja, N. S.

Nasanen, R.

J. Rovamo, V. Virsu, and R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54-56 (1978).
[CrossRef] [PubMed]

North, D. O.

D. O. North, “The absolute sensitivity of radio receivers,” RCA Rev. 6, 332-344 (1942).

Ohzawa, I.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987).
[PubMed]

Olzak, L. A.

L. A. Olzak and J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231-256 (1999).
[CrossRef] [PubMed]

Orban, G. A.

R. Vogels and G. A. Orban, “How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey,” J. Neurosci. 10, 3543-3558 (1990).
[PubMed]

Osman, E.

E. Osman, “A correlation model of binaural masking level differences,” J. Acoust. Soc. Am. 50, 1494-1511 (1971).
[CrossRef]

Parish, D. H.

D. H. Parish and G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, an the efficiency of letter discrimination,” Vision Res. 31, 1399-1415 (1991).
[CrossRef] [PubMed]

Pelli, D.

D. Pelli, “Effects of visual noise,” Ph.D. dissertation (Cambridge Univ. 1981).

Pelli, D. G.

D. G. Pelli and B. Farell, “Why use noise?” J. Opt. Soc. Am. A 16, 647-653 (1999).
[CrossRef]

J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508-1531 (1985).
[CrossRef] [PubMed]

D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C.Blakemore, ed. (Cambridge Univ. Press, 1990), pp. 3-24.

Plant, G. T.

G. T. Plant, “Temporal properties of normal and abnormal spatial vision,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 43-63.

Pumplin, J.

W. M. Hartmann and J. Pumplin, “Noise power fluctuations and the masking of sine signals,” J. Acoust. Soc. Am. 83, 2277-2289 (1988).
[CrossRef] [PubMed]

Regan, D.

Richards, V. M.

V. M. Richards, L. M. Heller, and D. M. Green, “The detection of a tone added to a narrow band of noise: the energy model revisited,” Q. J. Exp. Psychol. 43, 481-501 (1991).
[CrossRef]

Rose, A.

A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. A 38, 196-208 (1948).
[CrossRef]

Rovamo, J.

P. Makela, D. Whitaker, and J. Rovamo, “Modelling of orientation discrimination across the visual field,” Vision Res. 33, 723-730 (1993).
[CrossRef] [PubMed]

V. Virsu and J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475-494 (1979).
[CrossRef] [PubMed]

J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495-510 (1979).
[CrossRef] [PubMed]

J. Rovamo, V. Virsu, and R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54-56 (1978).
[CrossRef] [PubMed]

Sagi, D.

A. Gorea and D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nat. Neurosci. 4, 1146-1150 (2001).
[CrossRef] [PubMed]

Sansbury, R. V.

J. Nachmias and R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

Schelbe, E. H.

W. W. Mumford and E. H. Schelbe, Noise Performance Factors in Communication Systems (Horizon House-Microwave Inc., 1968).

Sclar, G.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987).
[PubMed]

Shimamura, K.

Skottun, B. C.

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987).
[PubMed]

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987).
[PubMed]

Slappendel, S.

Smith, B. G.

Solomon, J. A.

J. A. Solomon and M. J. Morgan, “Stochastic re-calibration: contextual effects on perceived tilt,” Proc. R. Soc., London, Ser. B 273, 2681-2686 (2006).
[CrossRef]

A. B. Watson and J. A. Solomon, “Model of visual contrast gain control and pattern masking,” J. Opt. Soc. Am. A 14, 2379-2391 (1997).
[CrossRef]

J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

Sperling, G.

Z. L. Lu and G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075-1088 (1999).
[CrossRef] [PubMed]

D. H. Parish and G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, an the efficiency of letter discrimination,” Vision Res. 31, 1399-1415 (1991).
[CrossRef] [PubMed]

Tanner, W. P.

W. P. Tanner, Jr., and T. G. Birdsall, “Definitions of d′ and n as psychophysical measures,” J. Acoust. Soc. Am. 30, 922-928 (1958).
[CrossRef]

Thijssen, J. M.

E. Eijkman, J. M. Thijssen, and A. J. Vendrik, “Weber's law, power law, and internal noise,” J. Acoust. Soc. Am. 40, 1164-1173 (1966).
[CrossRef] [PubMed]

Thomas, J. P.

Tjan, B. S.

B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995).
[CrossRef] [PubMed]

Tyler, C. W.

L. L. Kontsevich, C. C. Chen, and C. W. Tyler, “Separating the effects of response nonlinearity and internal noise psychophysically,” Vision Res. 42, 1771-1784 (2002).
[CrossRef] [PubMed]

Van Meeteren, A.

A. Van Meeteren and H. B. Barlow, “The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures,” Vision Res. 21, 765-777 (1981).
[CrossRef] [PubMed]

Vazquez, P.

P. Vazquez, M. Cano, and C. Acuna, “Discrimination of line orientation in humans and monkeys,” J. Neurophysiol. 83, 2639-2648 (2000).
[PubMed]

Vendrik, A. J.

E. Eijkman, J. M. Thijssen, and A. J. Vendrik, “Weber's law, power law, and internal noise,” J. Acoust. Soc. Am. 40, 1164-1173 (1966).
[CrossRef] [PubMed]

Virsu, V.

V. Virsu and J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475-494 (1979).
[CrossRef] [PubMed]

J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495-510 (1979).
[CrossRef] [PubMed]

J. Rovamo, V. Virsu, and R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54-56 (1978).
[CrossRef] [PubMed]

Vogels, R.

R. Vogels and G. A. Orban, “How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey,” J. Neurosci. 10, 3543-3558 (1990).
[PubMed]

Wagner, R. F.

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93-94 (1981).
[CrossRef] [PubMed]

Watson, A. B.

Waugh, S. J.

S. J. Waugh, D. M. Levi, and T. Carney, “Orientation, masking, and vernier acuity for line targets,” Vision Res. 33, 1619-1638 (1993).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer and E. J. Ley, “Spatial and Temporal Integration of Signals in Foveal Line Orientation,” J. Neurophysiol. 77, 2677-2684 (1997).
[PubMed]

G. Westheimer, K. Shimamura, and S. P. McKee, “Interference with line-orientation sensitivity,” J. Opt. Soc. Am. 66, 332-338 (1976).
[CrossRef] [PubMed]

G. Westheimer, “Visual hyperacuity,” in Progress in Sensory Physiology, D.Ottoson, ed. (Springer, 1981), pp. 1-30.
[CrossRef]

Whitaker, D.

P. Makela, D. Whitaker, and J. Rovamo, “Modelling of orientation discrimination across the visual field,” Vision Res. 33, 723-730 (1993).
[CrossRef] [PubMed]

Wichmann, F. A.

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

Wiesel, T. N.

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).

William Yund, E.

R. L. De Valois, E. William Yund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531-544 (1982).
[CrossRef] [PubMed]

Wilson, H. R.

Xu, P.

X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003).
[CrossRef] [PubMed]

Zhou, Y.

X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003).
[CrossRef] [PubMed]

Exp. Brain Res. (2)

J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495-510 (1979).
[CrossRef] [PubMed]

V. Virsu and J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475-494 (1979).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (8)

A. J. Ahumada and J. Lovell, “Stimulus features in signal detection,” J. Acoust. Soc. Am. 49, 1751-1756 (1971).
[CrossRef]

C. E. Bos and E. Deboer, “Masking and discrimination,” J. Acoust. Soc. Am. 39, 708-& (1966).
[CrossRef]

E. Eijkman, J. M. Thijssen, and A. J. Vendrik, “Weber's law, power law, and internal noise,” J. Acoust. Soc. Am. 40, 1164-1173 (1966).
[CrossRef] [PubMed]

W. M. Hartmann and J. Pumplin, “Noise power fluctuations and the masking of sine signals,” J. Acoust. Soc. Am. 83, 2277-2289 (1988).
[CrossRef] [PubMed]

L. E. Humes and W. Jesteadt, “Models of the additivity of masking,” J. Acoust. Soc. Am. 85, 1285-1294 (1989).
[CrossRef] [PubMed]

B. C. J. Moore, “Mechanisms of masking,” J. Acoust. Soc. Am. 57, 391-399 (1975).
[CrossRef] [PubMed]

E. Osman, “A correlation model of binaural masking level differences,” J. Acoust. Soc. Am. 50, 1494-1511 (1971).
[CrossRef]

W. P. Tanner, Jr., and T. G. Birdsall, “Definitions of d′ and n as psychophysical measures,” J. Acoust. Soc. Am. 30, 922-928 (1958).
[CrossRef]

J. Exp. Psychol. (1)

Z.-L. Lu and B. A. Dosher, “Spatial attention: Different mechanisms for central and peripheral temporal precues?” J. Exp. Psychol. 26, 1534-1548 (2000).

J. Neurophysiol. (4)

G. Westheimer and E. J. Ley, “Spatial and Temporal Integration of Signals in Foveal Line Orientation,” J. Neurophysiol. 77, 2677-2684 (1997).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987).
[PubMed]

P. Vazquez, M. Cano, and C. Acuna, “Discrimination of line orientation in humans and monkeys,” J. Neurophysiol. 83, 2639-2648 (2000).
[PubMed]

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987).
[PubMed]

J. Neurosci. (1)

R. Vogels and G. A. Orban, “How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey,” J. Neurosci. 10, 3543-3558 (1990).
[PubMed]

J. Neurosci. Methods (1)

X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (8)

J. Opt. Soc. Am. A (24)

H. R. Wilson and D. J. Gelb, “Modified line-element theory for spatial-frequency and width discrimination,” J. Opt. Soc. Am. A 1, 124-131 (1984).
[CrossRef] [PubMed]

H. R. Wilson and D. Regan, “Spatial-frequency adaptation and grating discrimination: predictions of a line-element model,” J. Opt. Soc. Am. A 1, 1091-1096 (1984).
[CrossRef] [PubMed]

D. Regan and K. I. Beverley, “Postadaptation orientation discrimination,” J. Opt. Soc. Am. A 2, 147-155 (1985).
[CrossRef] [PubMed]

B. L. Beard and J. A. J. Ahumada, “Detection in fixed and random noise in foveal and parafoveal vision explained by template learning,” J. Opt. Soc. Am. A 16, 755-763 (1999).
[CrossRef]

A. Burgess, “Effect of quantization noise on visual signal detection in noisy images,” J. Opt. Soc. Am. A 2, 1424-1428 (1985).
[CrossRef] [PubMed]

G. E. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391-404 (1987).
[CrossRef] [PubMed]

J. A. J. Ahumada and A. B. Watson, “Equivalent-noise model for contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1133-1139 (1985).
[CrossRef] [PubMed]

D. G. Pelli and B. Farell, “Why use noise?” J. Opt. Soc. Am. A 16, 647-653 (1999).
[CrossRef]

A. B. Watson, “Estimation of local spatial scale,” J. Opt. Soc. Am. A 4, 1579-1582 (1987).
[CrossRef] [PubMed]

Z.-L. Lu and B. A. Dosher, “Characterizing human perceptual inefficiencies with equivalent internal noise,” J. Opt. Soc. Am. A 16, 764-778 (1999).
[CrossRef]

L. Itti, C. Koch, and J. Braun, “Revisiting spatial vision: toward a unifying model,” J. Opt. Soc. Am. A 17, 1899-1917 (2000).
[CrossRef]

A. E. Burgess and B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617-627 (1988).
[CrossRef] [PubMed]

M. P. Eckstein, A. J. Ahumada, and A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406-2419 (1997).
[CrossRef]

B. G. Smith and J. P. Thomas, “Why are some spatial discriminations independent of contrast?” J. Opt. Soc. Am. A 6, 713-724 (1989).
[CrossRef] [PubMed]

Z.-L. Lu and B. A. Dosher, “Characterizing the spatial-frequency sensitivity of perceptual templates,” J. Opt. Soc. Am. A 18, 2041-2053 (2001).
[CrossRef]

A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. A 38, 196-208 (1948).
[CrossRef]

K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880-1888 (1992).
[CrossRef] [PubMed]

A. J. Ahumada, “Putting the visual system noise back in the picture,” J. Opt. Soc. Am. A 4, 2372-2378 (1987).
[CrossRef] [PubMed]

S. A. Klein and D. M. Levi, “Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation,” J. Opt. Soc. Am. A 2, 1170-1190 (1985).
[CrossRef] [PubMed]

J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710-1719 (1994).
[CrossRef]

A. B. Watson and J. A. Solomon, “Model of visual contrast gain control and pattern masking,” J. Opt. Soc. Am. A 14, 2379-2391 (1997).
[CrossRef]

W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775-782 (1984).
[CrossRef] [PubMed]

R. E. Fredericksen and R. F. Hess, “Temporal detection in human vision: Dependence on stimulus energy,” J. Opt. Soc. Am. A 14, 2557-2569 (1997).
[CrossRef]

D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508-1531 (1985).
[CrossRef] [PubMed]

J. Physiol. (London) (2)

F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).

Nat. Neurosci. (1)

A. Gorea and D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nat. Neurosci. 4, 1146-1150 (2001).
[CrossRef] [PubMed]

Nature (3)

J. Rovamo, V. Virsu, and R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54-56 (1978).
[CrossRef] [PubMed]

J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395-397 (1994).
[CrossRef] [PubMed]

D. P. Andrews, “Perception of contours in the central fovea,” Nature 205, 1218-1220 (1965).
[CrossRef]

Percept. Psychophys. (3)

L. T. Maloney, “Confidence Intervals for the parameters of psychometric functions,” Percept. Psychophys. 47, 127-134 (1990).
[CrossRef] [PubMed]

Z. L. Lu and G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075-1088 (1999).
[CrossRef] [PubMed]

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

Proc. IRE (1)

H. T. Friis, “Noise figures of radio receivers,” Proc. IRE 32, 419-422 (1944).
[CrossRef]

Proc. R. Soc., London, Ser. B (1)

J. A. Solomon and M. J. Morgan, “Stochastic re-calibration: contextual effects on perceived tilt,” Proc. R. Soc., London, Ser. B 273, 2681-2686 (2006).
[CrossRef]

Psychol. Rev. (3)

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267-314 (1989).
[CrossRef] [PubMed]

D. M. Green, “Consistency of auditory detection judgments,” Psychol. Rev. 71, 392-407 (1964).
[CrossRef] [PubMed]

Z. L. Lu and B. A. Dosher, “Characterizing observers using noise and observer models: assessing internal representations with external noise,” Psychol. Rev. 115, 44-82 (2008).
[CrossRef] [PubMed]

Psychol. Sci. (1)

B. A. Dosher and Z.-L. Lu, “Noise exclusion in spatial attention,” Psychol. Sci. 11, 139-146 (2000).
[CrossRef]

Q. J. Exp. Psychol. (1)

V. M. Richards, L. M. Heller, and D. M. Green, “The detection of a tone added to a narrow band of noise: the energy model revisited,” Q. J. Exp. Psychol. 43, 481-501 (1991).
[CrossRef]

RCA Rev. (1)

D. O. North, “The absolute sensitivity of radio receivers,” RCA Rev. 6, 332-344 (1942).

Rev. Mod. Phys. (1)

H. Fletcher, “Auditory patterns,” Rev. Mod. Phys. 12, 47-65 (1940).
[CrossRef]

Science (1)

A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93-94 (1981).
[CrossRef] [PubMed]

Spatial Vis. (1)

D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433-436 (1997).
[CrossRef]

Vision Res. (20)

J. Nachmias and R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

J. M. Foley and G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041-1053 (1981).
[CrossRef] [PubMed]

L. L. Kontsevich, C. C. Chen, and C. W. Tyler, “Separating the effects of response nonlinearity and internal noise psychophysically,” Vision Res. 42, 1771-1784 (2002).
[CrossRef] [PubMed]

L. A. Olzak and J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231-256 (1999).
[CrossRef] [PubMed]

M. D'Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117-3128 (1998).
[CrossRef]

B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995).
[CrossRef] [PubMed]

A. Van Meeteren and H. B. Barlow, “The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures,” Vision Res. 21, 765-777 (1981).
[CrossRef] [PubMed]

Z.-L. Lu and B. A. Dosher, “External noise distinguishes attention mechanisms,” Vision Res. 38, 1183-1198 (1998).
[CrossRef] [PubMed]

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual attention in precuing of location,” Vision Res. 40, 1269-1292 (2000).
[CrossRef] [PubMed]

R. F. Hess and E. R. Howell, “The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification,” Vision Res. 17, 1049-1055 (1977).
[CrossRef] [PubMed]

L. Kiorpes and J. A. Movshon, “Peripheral and central factors limiting the development of contrast sensitivity in Macaque monkeys,” Vision Res. 38, 61-70 (1998).
[CrossRef] [PubMed]

D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665-672 (1975).
[CrossRef] [PubMed]

S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449-461 (1990).
[CrossRef] [PubMed]

B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vision Res. 39, 3197-3221 (1999).
[CrossRef] [PubMed]

D. H. Parish and G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, an the efficiency of letter discrimination,” Vision Res. 31, 1399-1415 (1991).
[CrossRef] [PubMed]

R. L. De Valois, E. William Yund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531-544 (1982).
[CrossRef] [PubMed]

B. A. Dosher, S.-H. Liu, N. Blair, and Z.-L. Lu, “The spatial window of the perceptual template and endogenous attention,” Vision Res. 44, 1257-1271 (2004).
[CrossRef] [PubMed]

P. Makela, D. Whitaker, and J. Rovamo, “Modelling of orientation discrimination across the visual field,” Vision Res. 33, 723-730 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, and T. Carney, “Orientation, masking, and vernier acuity for line targets,” Vision Res. 33, 1619-1638 (1993).
[CrossRef] [PubMed]

J. Beck and T. Halloran, “Effects of spatial separation and retinal eccentricity on two-dot vernier acuity,” Vision Res. 25, 1105-1111 (1985).
[CrossRef] [PubMed]

Other (13)

G. Westheimer, “Visual hyperacuity,” in Progress in Sensory Physiology, D.Ottoson, ed. (Springer, 1981), pp. 1-30.
[CrossRef]

M. J. Morgan, “Hyperacuity,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 87-113.

This logic could be extended to consider more than two templates with an appropriate decision rule for identification tasks with more than two stimuli.

G. T. Plant, “Temporal properties of normal and abnormal spatial vision,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 43-63.

D. Regan, “Spatiotemporal abnormalities of vision in patients with multiple sclerosis,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 239-249.

D. Pelli, “Effects of visual noise,” Ph.D. dissertation (Cambridge Univ. 1981).

D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C.Blakemore, ed. (Cambridge Univ. Press, 1990), pp. 3-24.

W. W. Mumford and E. H. Schelbe, Noise Performance Factors in Communication Systems (Horizon House-Microwave Inc., 1968).

L. Itti, J. Braun, and C. Koch, “Modelling the modulatory effect of attention on human spatial vision,” in Advances in Neural Information Processing Systems, T.G.Ditterich, S.Becker, and Z.Ghahramani, eds. (MIT Press, 2002), pp. 1247-1254.

JS could not perform better than 85% correct in the highest external noise condition in some of the orientation difference conditions. We excluded his data in that condition in all the analysis.

Dosher and Lu (2000) showed that the stochastic PTM exhibits all the key characteristics derived for the simplified (analytic) PTM. In general, the analytic PTM is a close approximation to the stochastic PTM and provides a good approach to model testing: The (analytic) PTM fits all the data we have collected very well. In the special case when γ = 1.0, the (analytic) PTM is identical to the stochastic PTM. In the two extreme regions of the external noise manipulation, i. e., when internal additive noise dominates or when external noise dominates, the (analytic) PTM model approaches the stochastic model asymptotically.

In the ePTM development, the external noise in the stimulus had a Gaussian distribution, corresponding to white external noise. After nonlinear transduction, the distribution of the external noise might deviate from the Gaussian distribution. Spatial and temporal summation in the perceptual system should reduce this deviation. When combined with additive and multiplicative noises, both of which are Gaussian distributed, we assume that the sum of the noises is approximately Gaussian. However, we restrict ourselves to performance levels below 90% so as to avoid the tails of the distribution. The Gaussian assumption is not central to the development of the PTM outlined above, but it does simplify the application to signal detection estimation: the Gaussian noise distribution allows us to use the Gaussian form of signal detection calculations.

For a Gaussian random variable R with mean 0 and standard deviation NextσTN, the standard deviation of sign(R)abs(R)γ1 is Nextγ1σTNγ1Fγ1(γ1)...F(γ1)=1.00, 1.07, 1.14, 1.20, 1.26, 1.32, 1.37, 1.42, 1.47, 1.52, and 1.57, for = 1.0, 1.2, ..., 3.0.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Examples of a simple Gabor orientation identification task in the (a) contrast and (b) feature domain.

Fig. 2
Fig. 2

Full psychometric functions in all the experimental conditions. Smooth curves represent the best fitting Weibull functions.

Fig. 3
Fig. 3

TvC funcitons at 65%, 75%, and 85% performance levels in the four orientation difference conditions. Smooth curves represent the best-fitting ePTM. Error bars denote one standard deviation.

Fig. 4
Fig. 4

Schematic representations of the original PTM and the ePTM. In the ePTM, two detectors, one better matched to the signal stimulus in a given trial (with gain β B ) and the less-well-matched to the signal stimulus (with gain β W ), are used to model identification of two nonorthogonal targets.

Fig. 5
Fig. 5

Schematic representation of the perceptual template based on normalized β W .

Fig. 6
Fig. 6

TvC functions at 65%, 75%, and 85% performance levels in the four orientation difference conditions, plotted as squared contrast thresholds versus variance of external noise for the three human observers (first three rows) and the ideal observer (last row). The lines represent the results of the linear regression analysis.

Tables (4)

Tables Icon

Table 1 Parameters of the Best-Fitting Weibull Functions

Tables Icon

Table 2 Parameters of the Best-Fitting ePTM

Tables Icon

Table 3 Slopes and Intercepts of the Squared Threshold Contrast versus External Noise Variance Functions

Tables Icon

Table 4 Sampling Efficiencies of the Human Observers

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

L ( x , y ) = L 0 ( 1.0 + c sin ( 2 π f ( x cos θ + y sin θ ) ) ) e [ ( x 2 + y 2 ) 2 σ 2 ] ,
P ( c ) = ξ + ( 1 ξ λ ) ( 1 e ( c τ ) η ) ,
likelihood = N i ! K i ! ( N i K i ) ! P i K i ( 1 P i ) N i K i ,
χ 2 ( d f ) = 2 log ( max likelihood full max likelihood reduced ) ,
S ( x , y , t ) = c S 0 ( x , y , t ) + N ext g ( x , y , t ) ,
Y B 1 = T B ( x , y , t ) S ( x , y , t ) d x d y d t = c T B ( x , y , t ) S 0 ( x , y , t ) d x d y d t + N ext T B ( x , y , t ) g ( x , y , t ) d x d y d t ,
Y W 1 = T W ( x , y , t ) S ( x , y , t ) d x d y d t = c T W ( x , y , t ) S 0 ( x , y , t ) d x d y d t + N ext T W ( x , y , t ) g ( x , y , t ) d x d y d t .
Y B 1 = M B c + N ext σ T N g ̃ 1 ( 0 , 1 ) ,
Y W 1 = M W c + N ext σ T N g ̃ 2 ( 0 , 1 ) ,
Y B 2 = ( M B c ) γ 1 + N ext γ 1 σ T N γ 1 F γ 1 ( γ 1 ) g ̃ 1 ( 0 , 1 ) ,
Y W 2 = ( M W c ) γ 1 + N ext γ 1 σ T N γ 1 F γ 1 ( γ 1 ) g ̃ 2 ( 0 , 1 ) ,
β B = M B σ T N F ( γ 1 ) = T B ( x , y , t ) S 0 ( x , y , t ) d x d y d t σ T N F ( γ 1 ) ,
β W = M W σ T N F ( γ 1 ) = T W ( x , y , t ) S 0 ( x , y , t ) d x d y d t σ T N F ( γ 1 ) ,
Y B 2 = ( β B c ) γ 1 + N ext γ 1 g ̃ 1 ( 0 , 1 ) ,
Y W 2 = ( β W c ) γ 2 + N ext γ 2 g ̃ 2 ( 0 , 1 ) .
σ m B 2 = N m 2 [ N ext 2 γ 2 + ( β B c ) 2 γ 2 ] .
σ m W 2 = N m 2 [ N ext 2 γ 2 + ( β W c ) 2 γ 2 ] .
Y B 3 = ( β B c ) γ 1 + N ext γ 1 g ̃ 1 ( 0 , 1 ) + N a g ̃ 3 ( 0 , 1 ) + σ m B g ̃ 5 ( 0 , 1 ) ,
Y W 3 = ( β W c ) γ 1 + N ext γ 1 g ̃ 2 ( 0 , 1 ) + N a g ̃ 4 ( 0 , 1 ) + σ m W g ̃ 6 ( 0 , 1 ) ,
D = Y B 3 Y W 3 = [ ( β B c ) γ 1 ( β W c ) γ 1 ] + N ext γ 1 [ g ̃ 1 ( 0 , 1 ) g ̃ 2 ( 0 , 1 ) ] + N a [ g ̃ 3 ( 0 , 1 ) g ̃ 4 ( 0 , 1 ) ] + [ σ m B g ̃ 5 ( 0 , 1 ) σ m W g ̃ 6 ( 0 , 1 ) ] .
σ total 2 = 2 1 β W β B N ext 2 γ 1 + N m 2 [ 2 N ext 2 γ 2 + ( β B c ) 2 γ 2 + ( β W c ) 2 γ 2 ] + 2 N a 2 .
d = mean ( Y B 3 ) mean ( Y W 3 ) σ total 2 2 = ( β B c ) γ 1 ( β W c ) γ 1 1 β W β B N ext 2 γ 1 + N m 2 [ N ext 2 γ 2 + ( β B c ) 2 γ 2 + ( β W c ) 2 γ 2 2 ] + N a 2 .
c τ = { [ ( 1 β W β B + N m 2 ) N ext 2 γ + N a 2 ] ( β B 2 γ β W 2 γ ) d 2 N m 2 ( β B 2 γ + β W 2 γ ) 2 } 1 2 γ .
c τ 2 c τ 1 = [ ( β M 2 γ β U 2 γ ) d 1 2 N m 2 ( β M 2 γ + β U 2 γ ) 2 ( β M 2 γ β U 2 γ ) d 2 2 N m 2 ( β M 2 γ + β U 2 γ ) 2 ] 1 2 γ .
c τ = [ d 2 β B 2 ( N ext 2 + N a 2 ) ] 1 2 .
c τ 2 = d 2 β B 2 ( N ext 2 + N a 2 ) .
β B = υ β I B .
c τ 2 = d 2 υ β I B 2 ( N ext 2 + N a 2 ) = 1 υ k ( N ext 2 + N a 2 ) ,
υ = 1 a k = d 2 a β I B 2 .
β B = υ β I B .
R S S = [ log ( c τ predicted ) log ( c τ measured ) ] 2 ,
r 2 = 1.0 [ log ( c τ predicted ) log ( c τ measured ) ] 2 [ log ( c τ measured ) mean ( log ( c τ measured ) ) ] 2 ,
F ( d f 1 , d f 2 ) = ( r full 2 r reduced 2 ) d f 1 ( 1 r full 2 ) d f 2 ,
c Ideal 2 ( P c | task ) = μ Ideal ( P c | task ) N ext 2 .
c Human 2 ( P c | task , obs ) = μ Human ( P c | task , obs ) N ext 2 + b .
υ ( P c | task , obs ) = μ Ideal ( P c | task ) μ Human ( P c | task , obs ) .

Metrics