Abstract

Variations in illumination on a scene and trichromatic sampling by the eye limit inferences about scene content. The aim of this work was to elucidate these limits in relation to an ideal observer using color signals alone. Simulations were based on 50 hyperspectral images of natural scenes and daylight illuminants with correlated color temperatures 4000K, 6500K, and 25,000K. Estimates were made of the (Shannon) information available from each scene, the redundancies in receptoral and postreceptoral coding, and the information retrieved by an observer identifying corresponding points across image pairs. For the largest illuminant difference, between 25,000K and 4000K, a postreceptoral transformation providing minimum redundancy yielded an efficiency of about 80% in the information retrieved. This increased to about 89% when the transformation was optimized directly for information retrieved, corresponding to an equivalent Gaussian noise amplitude of 3.0% or to a mean of 3.6×104 distinct identifiable points per scene. Using color signals to retrieve information from natural scenes can approach ideal observer efficiency levels.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription