J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonics applications,” Opt. Lett. 17, 1978-1980 (2008).

[CrossRef]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigureable on-chip delay line,” Opt. Express 16, 8395-8405 (2008).

[CrossRef]
[PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65-71 (2007).

[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett. 89, 061118 (2006).

[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, “Calculation of propagation loss in photonic crystal waveguides by FDTD technique and Padé approximation,” Opt. Commun. 248, 309-315 (2005).

[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, “Application of Padé approximation in simulating photonic crystals,” Chin. J. Semicond. 26, 1281-1286 (2005).

Min Qiu, “Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately,” Microwave Opt. Technol. Lett. 45, 381-385 (2005).

[CrossRef]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).

[CrossRef]

W. H. Guo, Y. Z. Huang, and Q. M. Wang, “Resonant frequencies and quality factors for optical equilateral triangle resonators calculated by FDTD technique and the Padé Approximation,” IEEE Photonics Technol. Lett. 12, 813-815 (2000).

[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).

[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and Padé approximation,” IEEE Microw. Guid. Wave Lett. 8, 415-417 (1998).

[CrossRef]

J. Ritter and F. Arndt, “Efficient FDTD/matrix-pencil method for the full-wave scattering parameter analysis of waveguiding structures,” IEEE Trans. Microwave Theory Tech. 44, 2450-2456 (1996).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony's methods,” IEEE Microw. Guid. Wave Lett. 2, 431-433 (1992).

[CrossRef]

W. L. Ko and R. Mittra, “A combination of FDTD and Prony's methods for analyzing microwave integrated circuits,” IEEE Trans. Microwave Theory Tech. 39, 2176-2181 (1991).

[CrossRef]

Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229-233 (1989).

[CrossRef]

J. Ritter and F. Arndt, “Efficient FDTD/matrix-pencil method for the full-wave scattering parameter analysis of waveguiding structures,” IEEE Trans. Microwave Theory Tech. 44, 2450-2456 (1996).

[CrossRef]

G. A. Baker and J. L. Gammel, The Padé Approximant in Theoretical Physics (Academic,1970).

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonics applications,” Opt. Lett. 17, 1978-1980 (2008).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).

[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett. 89, 061118 (2006).

[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, “Application of Padé approximation in simulating photonic crystals,” Chin. J. Semicond. 26, 1281-1286 (2005).

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, “Calculation of propagation loss in photonic crystal waveguides by FDTD technique and Padé approximation,” Opt. Commun. 248, 309-315 (2005).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and Padé approximation,” IEEE Microw. Guid. Wave Lett. 8, 415-417 (1998).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

G. A. Baker and J. L. Gammel, The Padé Approximant in Theoretical Physics (Academic,1970).

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, “Calculation of propagation loss in photonic crystal waveguides by FDTD technique and Padé approximation,” Opt. Commun. 248, 309-315 (2005).

[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, “Application of Padé approximation in simulating photonic crystals,” Chin. J. Semicond. 26, 1281-1286 (2005).

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).

[CrossRef]

W. H. Guo, Y. Z. Huang, and Q. M. Wang, “Resonant frequencies and quality factors for optical equilateral triangle resonators calculated by FDTD technique and the Padé Approximation,” IEEE Photonics Technol. Lett. 12, 813-815 (2000).

[CrossRef]

Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229-233 (1989).

[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett. 89, 061118 (2006).

[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, “Application of Padé approximation in simulating photonic crystals,” Chin. J. Semicond. 26, 1281-1286 (2005).

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, “Calculation of propagation loss in photonic crystal waveguides by FDTD technique and Padé approximation,” Opt. Commun. 248, 309-315 (2005).

[CrossRef]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).

[CrossRef]

W. H. Guo, Y. Z. Huang, and Q. M. Wang, “Resonant frequencies and quality factors for optical equilateral triangle resonators calculated by FDTD technique and the Padé Approximation,” IEEE Photonics Technol. Lett. 12, 813-815 (2000).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

W. L. Ko and R. Mittra, “A combination of FDTD and Prony's methods for analyzing microwave integrated circuits,” IEEE Trans. Microwave Theory Tech. 39, 2176-2181 (1991).

[CrossRef]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and Padé approximation,” IEEE Microw. Guid. Wave Lett. 8, 415-417 (1998).

[CrossRef]

W. L. Ko and R. Mittra, “A combination of FDTD and Prony's methods for analyzing microwave integrated circuits,” IEEE Trans. Microwave Theory Tech. 39, 2176-2181 (1991).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony's methods,” IEEE Microw. Guid. Wave Lett. 2, 431-433 (1992).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony's methods,” IEEE Microw. Guid. Wave Lett. 2, 431-433 (1992).

[CrossRef]

Min Qiu, “Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately,” Microwave Opt. Technol. Lett. 45, 381-385 (2005).

[CrossRef]

J. Ritter and F. Arndt, “Efficient FDTD/matrix-pencil method for the full-wave scattering parameter analysis of waveguiding structures,” IEEE Trans. Microwave Theory Tech. 44, 2450-2456 (1996).

[CrossRef]

Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229-233 (1989).

[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65-71 (2007).

[CrossRef]

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonics applications,” Opt. Lett. 17, 1978-1980 (2008).

[CrossRef]

A. Taflove, Advances in Computational Electrodynamics--The Finite-Difference Time-Domain Method (Artech House, 1998).

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony's methods,” IEEE Microw. Guid. Wave Lett. 2, 431-433 (1992).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony's methods,” IEEE Microw. Guid. Wave Lett. 2, 431-433 (1992).

[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65-71 (2007).

[CrossRef]

W. H. Guo, Y. Z. Huang, and Q. M. Wang, “Resonant frequencies and quality factors for optical equilateral triangle resonators calculated by FDTD technique and the Padé Approximation,” IEEE Photonics Technol. Lett. 12, 813-815 (2000).

[CrossRef]

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonics applications,” Opt. Lett. 17, 1978-1980 (2008).

[CrossRef]

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonics applications,” Opt. Lett. 17, 1978-1980 (2008).

[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65-71 (2007).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett. 89, 061118 (2006).

[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, “Calculation of propagation loss in photonic crystal waveguides by FDTD technique and Padé approximation,” Opt. Commun. 248, 309-315 (2005).

[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, “Application of Padé approximation in simulating photonic crystals,” Chin. J. Semicond. 26, 1281-1286 (2005).

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonics applications,” Opt. Lett. 17, 1978-1980 (2008).

[CrossRef]

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonics applications,” Opt. Lett. 17, 1978-1980 (2008).

[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, “Distributed mode coupling in microring channel drop filters,” Appl. Phys. Lett. 89, 061118 (2006).

[CrossRef]

Y. Z. Huang, Q. Chen, W. H. Guo, and L. J. Yu, “Application of Padé approximation in simulating photonic crystals,” Chin. J. Semicond. 26, 1281-1286 (2005).

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).

[CrossRef]

J. A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto, “Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony's methods,” IEEE Microw. Guid. Wave Lett. 2, 431-433 (1992).

[CrossRef]

S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and Padé approximation,” IEEE Microw. Guid. Wave Lett. 8, 415-417 (1998).

[CrossRef]

W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation,” IEEE Microw. Wirel. Compon. Lett. 11, 223-225 (2001).

[CrossRef]

J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20, 1030-2032 (2008).

[CrossRef]

W. H. Guo, Y. Z. Huang, and Q. M. Wang, “Resonant frequencies and quality factors for optical equilateral triangle resonators calculated by FDTD technique and the Padé Approximation,” IEEE Photonics Technol. Lett. 12, 813-815 (2000).

[CrossRef]

Y. Hua and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system from its transient response,” IEEE Trans. Antennas Propag. 37, 229-233 (1989).

[CrossRef]

J. Ritter and F. Arndt, “Efficient FDTD/matrix-pencil method for the full-wave scattering parameter analysis of waveguiding structures,” IEEE Trans. Microwave Theory Tech. 44, 2450-2456 (1996).

[CrossRef]

W. L. Ko and R. Mittra, “A combination of FDTD and Prony's methods for analyzing microwave integrated circuits,” IEEE Trans. Microwave Theory Tech. 39, 2176-2181 (1991).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).

[CrossRef]

Min Qiu, “Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately,” Microwave Opt. Technol. Lett. 45, 381-385 (2005).

[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65-71 (2007).

[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, “Calculation of propagation loss in photonic crystal waveguides by FDTD technique and Padé approximation,” Opt. Commun. 248, 309-315 (2005).

[CrossRef]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigureable on-chip delay line,” Opt. Express 16, 8395-8405 (2008).

[CrossRef]
[PubMed]

Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933-940 (2009).

[CrossRef]
[PubMed]

L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonics applications,” Opt. Lett. 17, 1978-1980 (2008).

[CrossRef]

G. A. Baker and J. L. Gammel, The Padé Approximant in Theoretical Physics (Academic,1970).

A. Taflove, Advances in Computational Electrodynamics--The Finite-Difference Time-Domain Method (Artech House, 1998).