Abstract

The inclusion of all higher-order terms in the refractive index variation δn, missing in J. Opt. Soc. Am. B 17, 809 (2000) , allows us to recover the correct transverse Helmholtz equation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Crosignani, P. Di Porto, and A. Yariv, “An exact transverse Helmholtz equation,” J. Opt. Soc. Am. A 26, 1977-1979 (2009).
    [CrossRef]
  2. A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, “Vectorial nonparaxial propagation equation in the presence of a tensorial refractive index perturbation,” J. Opt. Soc. Am. B 17, 809-819 (2000).
    [CrossRef]
  3. A. Yu. Savchencko and B. Ya. Zel'dovich, “Wave propagation in a guiding structure: one step beyond the paraxial approximation,” J. Opt. Soc. Am. B 13, 273-281 (1996).
    [CrossRef]

2009

2000

1996

Ciattoni, A.

Crosignani, B.

Di Porto, P.

Yariv, A.

Yu. Savchencko, A.

Zel'dovich, B. Ya.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( i z + L ̂ ) E = k 2 L ̂ ( Δ n E ) + [ Δ n ̃ 1 L ̂ ( E E ) ] 1 L ̂ [ ( Δ n E ) ] ,
( i z L ̂ ) E = k 2 L ̂ ( Δ n E ) + [ Δ n ̃ 1 L ̂ ( E E ) ] + 1 L ̂ [ ( Δ n E ) ] ,
Δ n ̃ = n 0 Δ n 1 + 2 Δ n ,
2 E + k 2 ( n 2 n 0 2 ) E + [ E ln ( 1 + 2 Δ n ) ] = 0 ,

Metrics