Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetic fields and modal excitations on a thin silver film

Not Accessible

Your library or personal account may give you access

Abstract

In this paper we extend the fast-all-modes method and the numerical modified steepest-descent-path method to the optical frequency range by finding all modes and solving the total electric field in three dimensions that is due to a point source above a lossy thin metal film with a negative permittivity situated between two dissimilar dielectric materials. We show that up to four proper surface wave modes may propagate on the film surface, including both backward and forward waves. We also solve for the electric field below the lossy thin metal film and verify the existence of superlensing of the electric field, comparing that case to the case of a dielectric film where no superlensing occurs. The CPU time using the fast-all-modes method and the numerical modified steepest-descent-path method is considerably less than that using the conventional method of integration along the Sommerfeld integration path.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast algorithm for the analysis of scattering by dielectric rough surfaces

Vikram Jandhyala, Balasubramaniam Shanker, Eric Michielssen, and Weng C. Chew
J. Opt. Soc. Am. A 15(7) 1877-1885 (1998)

Characteristics of surface plasmon–polariton waves excited on 2D periodically patterned columnar thin films of silver

Jhuma Dutta, S. Anantha Ramakrishna, and Akhlesh Lakhtakia
J. Opt. Soc. Am. A 33(9) 1697-1704 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.