Abstract

The authors’s group proposed an optical-readout uncooled infrared detector. Primarily because of the bilayer structure of the usual such detector, deformation of the reflector is often unavoidable and seriously degrades the optical readout sensitivity. According to the theoretical analysis and experimental validation, an optical solution to this problem was established, and it was found that for the specific curvature radius, there are many characteristic reflector lengths and filter positions corresponding to the sensitivity peaks. When employing this solution, the sensitivity loss induced by the deformed reflector would be reduced to a minimum level. The strategy of this solution may also be suitable for other micromechanical devices that experience the same problem.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).
  2. J. L. Miller, Principles of Infrared Technology (Van Nostram Reinhold, 1994).
  3. R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
    [CrossRef]
  4. R. S. Balcerak, “Uncooled IR imaging: technology for the next generation,” Proc. SPIE 3698, 110-118 (1999).
    [CrossRef]
  5. J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chem. Phys. Lett. 217, 589-594 (1994).
    [CrossRef]
  6. J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994).
    [CrossRef]
  7. J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997).
    [CrossRef]
  8. D. Sarid, Scanning Force Microscopy (Oxford Univ. Press, 1991).
  9. H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
    [CrossRef]
  10. T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “160×120 pixels optically readable bimaterial infrared detector,” in The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 578-581.
  11. T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
    [CrossRef]
  12. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
    [CrossRef]
  13. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
    [CrossRef]
  14. D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
    [CrossRef]
  15. Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
    [CrossRef]
  16. L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).
  17. C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
    [CrossRef]
  18. Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
    [CrossRef] [PubMed]
  19. F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
    [CrossRef]
  20. D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys. 104, 051508 (2008).
    [CrossRef]
  21. Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32, 594-596 (2007).
    [CrossRef] [PubMed]
  22. T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008).
    [CrossRef]
  23. T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
    [CrossRef]
  24. R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006).
    [CrossRef]
  25. F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

2009 (1)

T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
[CrossRef]

2008 (3)

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys. 104, 051508 (2008).
[CrossRef]

T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008).
[CrossRef]

2007 (3)

F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

2006 (3)

R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006).
[CrossRef]

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

2004 (2)

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

2003 (1)

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

2002 (1)

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

1999 (2)

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

R. S. Balcerak, “Uncooled IR imaging: technology for the next generation,” Proc. SPIE 3698, 110-118 (1999).
[CrossRef]

1998 (2)

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

1997 (1)

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997).
[CrossRef]

1994 (2)

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chem. Phys. Lett. 217, 589-594 (1994).
[CrossRef]

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994).
[CrossRef]

Akagawa, K.

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “160×120 pixels optically readable bimaterial infrared detector,” in The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 578-581.

Amantea, R.

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

Andreoli, C.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

Balcerak, R. S.

R. S. Balcerak, “Uncooled IR imaging: technology for the next generation,” Proc. SPIE 3698, 110-118 (1999).
[CrossRef]

Barnes, J. R.

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994).
[CrossRef]

Berger, R.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

Brugger, J.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

Chen, D. P.

T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
[CrossRef]

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008).
[CrossRef]

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Cheng, T.

T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
[CrossRef]

T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008).
[CrossRef]

Datskos, P. G.

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys. 104, 051508 (2008).
[CrossRef]

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Despont, M.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

Devitt, J.

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

Dong, F. L.

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

Duan, Z. H.

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Elliman, R. G.

R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006).
[CrossRef]

Forrai, D.

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

Gao, J.

T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
[CrossRef]

Gerber, Ch.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chem. Phys. Lett. 217, 589-594 (1994).
[CrossRef]

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994).
[CrossRef]

Gimzewski, J. K.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chem. Phys. Lett. 217, 589-594 (1994).
[CrossRef]

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994).
[CrossRef]

Goodman, L. A.

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

Grbovic, D.

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys. 104, 051508 (2008).
[CrossRef]

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

Guntherodt, H. J.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

Guo, Z. Y.

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Horowitz, R.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

Ishizuya, T.

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “160×120 pixels optically readable bimaterial infrared detector,” in The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 578-581.

Jiao, B. B.

T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008).
[CrossRef]

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

Kazama, T.

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “160×120 pixels optically readable bimaterial infrared detector,” in The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 578-581.

Kim, T. H.

R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006).
[CrossRef]

Kitching, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

Kwon, O.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

Lai, J.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997).
[CrossRef]

Lang, H. P.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

Lavrik, N. V.

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys. 104, 051508 (2008).
[CrossRef]

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Li, C. B.

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

Lloyd, J. M.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).

Majumdar, A.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997).
[CrossRef]

Mao, M.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

McIntyre, B.

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

Meyer, E.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chem. Phys. Lett. 217, 589-594 (1994).
[CrossRef]

Miao, Z. Y.

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

Miller, J. L.

J. L. Miller, Principles of Infrared Technology (Van Nostram Reinhold, 1994).

Nelson, E.

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

Norton, P.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

Pan, L.

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Pantuso, F. P.

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

Perazzo, T.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997).
[CrossRef]

Rajic, S.

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys. 104, 051508 (2008).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Ramseyer, J. P.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

Sarid, D.

D. Sarid, Scanning Force Microscopy (Oxford Univ. Press, 1991).

Sauer, D. J.

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

Schlittler, R. R.

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chem. Phys. Lett. 217, 589-594 (1994).
[CrossRef]

Shi, H. T.

T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
[CrossRef]

Shi, S. L.

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

Shi, Z.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997).
[CrossRef]

Spooner, M. G.

R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006).
[CrossRef]

Stephenson, S. J.

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994).
[CrossRef]

Suzuki, J.

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “160×120 pixels optically readable bimaterial infrared detector,” in The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 578-581.

Varesi, J.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997).
[CrossRef]

Varesi, J. B.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

Varhese, M.

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

Vettiger, P.

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

Villianni, T. S.

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

Wang, W. B.

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

Weijers-Dall, T. D. M.

R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006).
[CrossRef]

Welland, M. E.

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994).
[CrossRef]

White, L. K.

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

Wilkinson, A. R.

R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006).
[CrossRef]

Wu, X. P.

T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
[CrossRef]

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008).
[CrossRef]

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Xiong, Z. M.

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Ye, T. C.

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

Zhang, Q. C.

T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
[CrossRef]

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008).
[CrossRef]

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

Z. Y. Miao, Q. C. Zhang, Z. Y. Guo, X. P. Wu, and D. P. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32, 594-596 (2007).
[CrossRef] [PubMed]

F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

Zhao, Y.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306 (1997).
[CrossRef]

H. P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, Ch. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer, and H. J. Guntherodt, “Sequential position readout from arrays of micromechanical cantilever sensors,” Appl. Phys. Lett. 72, 383 (1998).
[CrossRef]

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision using uncooled micro-optomechanical camera,” Appl. Phys. Lett. 74, 3567-3569 (1999).
[CrossRef]

D. Grbovic, N. V. Lavrik, P. G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays,” Appl. Phys. Lett. 89, 073118 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

J. K. Gimzewski, Ch. Gerber, E. Meyer, and R. R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor,” Chem. Phys. Lett. 217, 589-594 (1994).
[CrossRef]

Chin. Phys. Lett. (1)

Z. H. Duan, Q. C. Zhang, X. P. Wu, L. Pan, D. P. Chen, X. P. Wu, and Z. Y. Guo, “Uncooled optically readable bimaterial micro-cantilever infrared imaging device,” Chin. Phys. Lett. 20, 2130 (2003).
[CrossRef]

IEER Electr. Device L. (1)

T. Cheng, Q. C. Zhang, X. P. Wu, D. P. Chen, and B. B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEER Electr. Device L. 29, 1218-1221 (2008).
[CrossRef]

J. Appl. Phys. (2)

T. Cheng, Q. C. Zhang, D. P. Chen, H. T. Shi, J. Gao, and X. P. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105, 034505-7 (2009).
[CrossRef]

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys. 104, 051508 (2008).
[CrossRef]

J. Exp. Mech. (1)

F. L. Dong, B. B. Jiao, Q. C. Zhang, D. P. Chen, Z. Y. Miao, and Z. M. Xiong, “Advance in optically readable uncooled infrared imaging,” J. Exp. Mech. 22, 401-406 (2007) (in Chinese).

J. Experimental Mechanics (1)

L. Pan, Q. C. Zhang, X. P. Wu, Z. H. Duan, D. P. Chen, W. B. Wang, and Z. Y. Guo, “MEMS based optomechanical infrared imaging,” J. Experimental Mechanics 19, 403-407 (2004) (in Chinese).

J. Microelectromech. Syst. (1)

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. B. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst. 11, 136-146 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Li, B. B. Jiao, S. L. Shi, D. P. Chen, T. C. Ye, Q. C. Zhang, Z. Y. Guo, F. L. Dong, and Z. Y. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance,” Meas. Sci. Technol. 17, 1981-1986 (2006).
[CrossRef]

Nature (London) (1)

J. R. Barnes, S. J. Stephenson, M. E. Welland, Ch. Gerber, and J. K. Gimzewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device,” Nature (London) 72, 79-82 (1994).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

R. G. Elliman, T. D. M. Weijers-Dall, M. G. Spooner, T. H. Kim, and A. R. Wilkinson, “Stress and stress relief in dielectric thin films--the role of hydrogen,” Nucl. Instrum. Methods Phys. Res. B 249, 310-313 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

R. Amantea, L. A. Goodman, F. P. Pantuso, D. J. Sauer, M. Varhese, T. S. Villianni, and L. K. White, “Progress toward an uncooled IR imager with 5-mK NETD,” Proc. SPIE 3436, 647-659 (1998).
[CrossRef]

R. S. Balcerak, “Uncooled IR imaging: technology for the next generation,” Proc. SPIE 3698, 110-118 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Ultramicroscopy (2)

Z. Y. Miao, Q. C. Zhang, D. P. Chen, Z. Y. Guo, F. L. Dong, Z. M. Xiong, X. P. Wu, C. B. Li, and B. B. Jiao, “Uncooled IR imaging using optomechanical detectors,” Ultramicroscopy 107, 610-616 (2007).
[CrossRef] [PubMed]

F. L. Dong, Q. C. Zhang, D. P. Chen, Z. Y. Miao, Z. M. Xiong, Z. Y. Guo, C. B. Li, B. B. Jiao, and X. P. Wu, “Uncooled infrared imaging device based on optimized optomechanical micro-cantilever array,” Ultramicroscopy 108, 579-588 (2008).
[CrossRef]

Other (4)

T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “160×120 pixels optically readable bimaterial infrared detector,” in The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2002), pp. 578-581.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).

J. L. Miller, Principles of Infrared Technology (Van Nostram Reinhold, 1994).

D. Sarid, Scanning Force Microscopy (Oxford Univ. Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic illustration of the substrate-free FPA.

Fig. 2
Fig. 2

Single element of the substrate-free FPA.

Fig. 3
Fig. 3

Basic fabrication steps of the substrate-free FPA.

Fig. 4
Fig. 4

Schematic illustration of the proposed uncooled IR detector with optical readout.

Fig. 5
Fig. 5

Notations and coordinate systems used in the optical model.

Fig. 6
Fig. 6

Optical readout sensitivities of ideal plane reflector with L ranging from 0 to 150 μ m and x knife ranging from 2.5 to 2.5 mm .

Fig. 7
Fig. 7

Comparison of optical readout sensitivity with the previous approach.

Fig. 8
Fig. 8

Normalized intensity distributions of the R = 6 mm reflector with the reflector length L ranging from 0 to 150 μ m .

Fig. 9
Fig. 9

Cutting lines of the intensity surface shown in Fig. 8 at x f = 0.38 and 0 mm .

Fig. 10
Fig. 10

Optical readout sensitivities of the R = 6 mm reflector with L ranging from 0 to 150 μ m and x knife ranging from 2.5 to 2.5 mm .

Fig. 11
Fig. 11

Cutting lines of the sensitivity surface shown in Fig. 9 at x f = 0.38 and 0 mm .

Fig. 12
Fig. 12

Cutting lines of the sensitivity surfaces shown in Fig. 6, 9, respectively, at L = 50 μ m .

Fig. 13
Fig. 13

Comparison of normalized intensity distributions with the ideal plane reflector.

Fig. 14
Fig. 14

Micrograph of the fabricated substrate-free FPA. The inset is a close-up of an individual microcantilever.

Fig. 15
Fig. 15

(a) 3D profile and (b) curvature radius of the reflector, measured experimentally to be about 6 mm , respectively, by a Veeco Profiler.

Fig. 16
Fig. 16

Relation between the light intensity projected onto the CCD chip ( 12  bit ; I CCD = 4096 ) and the deflection angle of the reflector, which was determined experimentally.

Fig. 17
Fig. 17

Thermal images obtained by the proposed uncooled IR detector with the filter position of x knife = 0.38 mm .

Fig. 18
Fig. 18

Integral intensities of the diffraction pattern (the reflector of L = 50 μ m and R = 6 mm functions at x knife = 0 and 0.38 mm , respectively).

Tables (1)

Tables Icon

Table 1 Parameters of the Fabricated Substrate-Free FPAs Used

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R sys = Δ I Δ T S = H S T Θ ,
Δ z = R R 2 x 2 .
Δ z x 2 2 R .
U ( x f ) = ( A j λ f ) + rect ( x L ) exp ( j 2 π x 2 λ R ) exp ( j 2 π x x f λ f ) d x ,
I ( x f ) = ( A 2 R 8 f 2 λ ) | erf [ ( 1 2 i 2 ) ( f L R x f ) f π R λ ] + erf [ ( 1 2 i 2 ) ( f L + R x f ) f π R λ ] | 2 = ( A 2 R 8 f 2 λ ) F erf ( x f ) ,
Θ = d d θ ( x knife I ( x f ) d x f ) = I ( x knife ) d x f d θ = 2 f I ( x knife ) = 2 f ( A 2 R 8 f 2 λ ) F erf ( x f ) ,
x knife I ( x f ) d x f I CCD ,
( A 2 R 8 f 2 λ ) I CCD x knife F erf ( x f ) d x f .
Θ 2 f I CCD F erf ( x f ) x knife F erf ( x f ) d x f
Θ pre = π 180 2 L λ I CCD
1 2 λ R L 2 x f λ f L = 1 2 + 2 n , ( n = 0 , 1 , 2 ) .

Metrics