Abstract

Maximum storage capacity in a reflection-type holographic memory with three-dimensional speckle shift multiplexing is investigated numerically. An explicit expression of storage capacity is derived on the basis of interpage crosstalk noise. We fabricate a simulator to evaluate reflection-type holographic data storage by calculating wave propagation, recording a hologram, and reconstruction by scalar diffraction. We calculate the properties of the resultant diffraction efficiency, that is the noise, at the first null in the speckle-shift multiplexing. Numerical results indicate that the storage capacity is proportional to the numerical aperture to the fourth power and to the volume of the recording medium and is inversely proportional to the wavelength to the third power. Achievable storage capacity is discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).
  2. L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
    [Crossref]
  3. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
    [Crossref] [PubMed]
  4. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006).
    [Crossref] [PubMed]
  5. O. Matoba, Y. Yokohama, M. Miura, K. Nitta, and T. Yoshimura, “Reflection-type holographic disk memory with random phase shift multiplexing,” Appl. Opt. 45, 3270-3274 (2006).
    [Crossref] [PubMed]
  6. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording,” Appl. Opt. 46, 1460-1466 (2007).
    [Crossref] [PubMed]
  7. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Image-based numerical evaluation techniques in volume holographic memory systems,” J. Opt. Soc. Am. B 24, 792-798 (2007).
    [Crossref]
  8. M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Speckle shift multiplexing along axial direction in reflection-type holographic memory,” Jpn. J. Appl. Phys. 46, 3832-3836 (2007).
    [Crossref]
  9. F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Special phase mask and related data format for page-oriented holographic data storage,” presented at the International Workshop on Holographic Memories 2008, October 20-23, 2008, Irago, Aichi, Japan. Digest, pp. 69-70.
  10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  11. C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978-1983 (1992).
    [Crossref]
  12. N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005).
    [Crossref]
  13. S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246-1252 (2005).
    [Crossref]
  14. B. Gombkoto, P. Koppa, A. Suto, and E. Lorincz, “Computer simulation of reflective volume grating holographic data storage,” J. Opt. Soc. Am. A 24, 2075-2081 (2007).
    [Crossref]

2007 (4)

2006 (2)

2005 (2)

N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005).
[Crossref]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246-1252 (2005).
[Crossref]

2004 (2)

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
[Crossref] [PubMed]

1992 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Anderson, K.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).

Curtis, K.

Fukumoto, A.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246-1252 (2005).
[Crossref]

Gombkoto, B.

Gu, C.

Hesselink, L.

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

Hong, J.

Horimai, H.

Ishii, N.

N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005).
[Crossref]

Kamido, K.

N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005).
[Crossref]

Kinoshita, N.

N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005).
[Crossref]

Knittel, J.

F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Special phase mask and related data format for page-oriented holographic data storage,” presented at the International Workshop on Holographic Memories 2008, October 20-23, 2008, Irago, Aichi, Japan. Digest, pp. 69-70.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Koppa, P.

Lambourdiere, S. R.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246-1252 (2005).
[Crossref]

Lorincz, E.

Malki, O.

F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Special phase mask and related data format for page-oriented holographic data storage,” presented at the International Workshop on Holographic Memories 2008, October 20-23, 2008, Irago, Aichi, Japan. Digest, pp. 69-70.

Matoba, O.

McMichael, I.

Miura, M.

Mok, F.

Nitta, K.

Orlov, S. S.

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

Przygodda, F.

F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Special phase mask and related data format for page-oriented holographic data storage,” presented at the International Workshop on Holographic Memories 2008, October 20-23, 2008, Irago, Aichi, Japan. Digest, pp. 69-70.

Psaltis, D.

H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).

Richter, H.

F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Special phase mask and related data format for page-oriented holographic data storage,” presented at the International Workshop on Holographic Memories 2008, October 20-23, 2008, Irago, Aichi, Japan. Digest, pp. 69-70.

Saxena, R.

Shimizu, N.

N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005).
[Crossref]

Shino, H.

N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005).
[Crossref]

Sincerbox, G.

H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).

Suto, A.

Tan, X.

Tanaka, K.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246-1252 (2005).
[Crossref]

Trautner, H.

F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Special phase mask and related data format for page-oriented holographic data storage,” presented at the International Workshop on Holographic Memories 2008, October 20-23, 2008, Irago, Aichi, Japan. Digest, pp. 69-70.

Watanabe, K.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246-1252 (2005).
[Crossref]

Yokohama, Y.

Yoshimura, T.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (3)

M. Miura, O. Matoba, K. Nitta, and T. Yoshimura, “Speckle shift multiplexing along axial direction in reflection-type holographic memory,” Jpn. J. Appl. Phys. 46, 3832-3836 (2007).
[Crossref]

N. Kinoshita, H. Shino, N. Ishii, N. Shimizu, and K. Kamido, “Integrated simulation for volume holographic memory using finite-difference time-domain method,” Jpn. J. Appl. Phys. 44, 3503-3507 (2005).
[Crossref]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246-1252 (2005).
[Crossref]

Opt. Lett. (1)

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[Crossref]

Other (2)

H. J. Coufal, D. Psaltis, and G. Sincerbox, Holographic Data Storage (Springer, 2000).

F. Przygodda, J. Knittel, O. Malki, H. Trautner, and H. Richter, “Special phase mask and related data format for page-oriented holographic data storage,” presented at the International Workshop on Holographic Memories 2008, October 20-23, 2008, Irago, Aichi, Japan. Digest, pp. 69-70.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of a reflection-type holographic memory with three-dimensional speckle shift-multiplexing.

Fig. 2
Fig. 2

Simulation model of the reflection-type holographic memory.

Fig. 3
Fig. 3

Input data used in the simulation.

Fig. 4
Fig. 4

Shift selectivity. Normalized diffraction efficiency as a function of spatial shift in surface plane.

Fig. 5
Fig. 5

Normalized power of crosstalk noise at the first null as a function of numerical aperture. The fitting curve is described as 1.36 × 10 3 ( NA ) 2 .

Fig. 6
Fig. 6

Normalized power of crosstalk noise at the first null as a function of thickness. The fitting curve is described as 4.53 × 10 3 t .

Fig. 7
Fig. 7

Normalized power of crosstalk noise at the first null as a function of wavelength. The fitting curve is described as 1.33 × 10 4 λ + 2.81 × 10 3 .

Fig. 8
Fig. 8

Normalized diffraction efficiency as a function of spatial shift in surface plane when a number of bit C p in a data page changes.

Fig. 9
Fig. 9

Schematic layout of three-dimensional shift multiplexing.

Fig. 10
Fig. 10

Normalized cross-correlation between complex amplitudes of reconstructed beams.

Fig. 11
Fig. 11

Model of reflection-type holographic disk memory for the estimation of maximum storage capacity.

Fig. 12
Fig. 12

Maximum storage capacity as a function of numerical aperture when a wavelength of a light source changes.

Tables (2)

Tables Icon

Table 1 Parameters for Numerical Evaluation of Interpage Crosstalk Noise

Tables Icon

Table 2 Parameters for Assessment of Maximum Storage Capacity

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ; z 1 ) = | S m ( x , y ; z 1 ) + R m ( x , y ; z 1 ) | 2 = | S m ( x , y ; z 1 ) | 2 + | R m ( x , y ; z 1 ) | 2 + S m * ( x , y ; z 1 ) R m ( x , y ; z 1 ) + S m ( x , y ; z 1 ) R m * ( x , y ; z 1 ) .
n ( x , y , z 1 ) = n 0 + n 1 I ( x , y , z 1 ) .
S m ( x , y ; z 1 ) = R m ( x , y ; z 1 ) exp [ i k n ( x , y ; z 1 ) δ t ] .
S m ( x , y ; z 1 ) = R m ( x , y ; z 1 ) exp ( i k n 0 δ t ) exp ( i k n 1 I δ t ) R m ( x , y ; z 1 ) exp ( i k n 0 δ t ) { 1 + i k n 1 I δ t + 1 2 [ i k n 1 I δ t ] 2 } .
S m ( x , y ; z 1 ) = R m ( x , y ; z 1 ) exp ( i k n 0 δ t ) { exp ( i k n 1 I δ t ) 1 } .
SNR = P signal P crosstalk = C SNR t NA 2 λ M .
M max = C SNR SNR target t ( NA ) 2 λ .
C max = C p V V h M max ,
C max = π C SNR SNR target NA 2 tan 2 [ sin 1 NA ] α 2 λ 3 V π C SNR SNR target NA 4 α 2 λ 3 V ,

Metrics