Abstract

A new device was designed to provide fast measurements (4 s) of the peripheral refraction (90° central horizontal field). Almost-continuous traces are obtained with high angular resolution (0.4°) while the subject is fixating a central stimulus. Three-dimensional profiles can also be measured. The peripheral refractions in 10 emmetropic subjects were studied as a function of accommodation (200 cm, 50 cm, and 25 cm viewing distances). Peripheral refraction profiles were largely preserved during accommodation but were different in each individual. Apparently, the accommodating lens changes its focal length evenly over the central 90° of the visual field.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
    [CrossRef] [PubMed]
  2. E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005).
    [CrossRef]
  3. F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and the Skiagram,” Ophthalmologica 162, 1-10 (1971).
    [CrossRef] [PubMed]
  4. L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008).
    [CrossRef]
  5. M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691-695 (1981).
    [PubMed]
  6. D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022-1030 (2000).
  7. N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Visual Sci. 45, 2152-2162 (2004).
    [CrossRef]
  8. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450-1458 (2006).
    [CrossRef]
  9. A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207-217 (1999).
    [CrossRef] [PubMed]
  10. L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005)
    [CrossRef] [PubMed]
  11. A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33, 865-863 (2008).
    [CrossRef]
  12. D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Validation of aberrometry-based relative peripheral refraction measurements,” Ophthalmic Physiol. Opt. 28, 83-90 (2008).
    [CrossRef] [PubMed]
  13. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363-2373 (2002).
    [CrossRef]
  14. R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46, 3935-3940 (2006).
    [CrossRef] [PubMed]
  15. J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Invest. Ophthalmol. Visual Sci. 50, 4516-4522 (2009).
    [CrossRef]
  16. J. Gwiazda, F. Thorn, J. Bauer, and R. Held, “Myopic children show insufficient accommodative response to blur,” Invest. Ophthalmol. Visual Sci. 34, 690-694 (1993).
  17. J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
    [CrossRef]
  18. F. Schaeffel, L. Farkas, and H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 26, 1505-1509 (1987).
    [CrossRef] [PubMed]
  19. J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009).
    [CrossRef] [PubMed]
  20. M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
    [CrossRef]
  21. R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273-1281 (1985).
    [CrossRef] [PubMed]
  22. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881-1891 (1999).
    [CrossRef]
  23. G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71, 119-125 (1988).
    [CrossRef]
  24. R. Calver, H. Radhakrishnan, E. Osuobeni1, and D. O'Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27, 584-593 (2007).
    [CrossRef] [PubMed]
  25. L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthamol. 93, 1186-1190 (2009).
    [CrossRef]
  26. L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1-11 (2009).
    [CrossRef]
  27. T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vision Sci. 79, 424-430 (2002).
    [CrossRef]
  28. A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
    [CrossRef]

2009

J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Invest. Ophthalmol. Visual Sci. 50, 4516-4522 (2009).
[CrossRef]

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009).
[CrossRef] [PubMed]

L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthamol. 93, 1186-1190 (2009).
[CrossRef]

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1-11 (2009).
[CrossRef]

2008

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33, 865-863 (2008).
[CrossRef]

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Validation of aberrometry-based relative peripheral refraction measurements,” Ophthalmic Physiol. Opt. 28, 83-90 (2008).
[CrossRef] [PubMed]

L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008).
[CrossRef]

2007

R. Calver, H. Radhakrishnan, E. Osuobeni1, and D. O'Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27, 584-593 (2007).
[CrossRef] [PubMed]

2006

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450-1458 (2006).
[CrossRef]

R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46, 3935-3940 (2006).
[CrossRef] [PubMed]

2005

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005)
[CrossRef] [PubMed]

E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005).
[CrossRef]

2004

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
[CrossRef] [PubMed]

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Visual Sci. 45, 2152-2162 (2004).
[CrossRef]

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

2002

2000

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022-1030 (2000).

1999

A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207-217 (1999).
[CrossRef] [PubMed]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881-1891 (1999).
[CrossRef]

1993

J. Gwiazda, F. Thorn, J. Bauer, and R. Held, “Myopic children show insufficient accommodative response to blur,” Invest. Ophthalmol. Visual Sci. 34, 690-694 (1993).

1988

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71, 119-125 (1988).
[CrossRef]

1987

1985

1981

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691-695 (1981).
[PubMed]

1971

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and the Skiagram,” Ophthalmologica 162, 1-10 (1971).
[CrossRef] [PubMed]

Artal, P.

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1-11 (2009).
[CrossRef]

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363-2373 (2002).
[CrossRef]

A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207-217 (1999).
[CrossRef] [PubMed]

Atchison, D. A.

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33, 865-863 (2008).
[CrossRef]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450-1458 (2006).
[CrossRef]

Bauer, J.

J. Gwiazda, F. Thorn, J. Bauer, and R. Held, “Myopic children show insufficient accommodative response to blur,” Invest. Ophthalmol. Visual Sci. 34, 690-694 (1993).

Berntsen, D. A.

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Validation of aberrometry-based relative peripheral refraction measurements,” Ophthalmic Physiol. Opt. 28, 83-90 (2008).
[CrossRef] [PubMed]

Bescos, J.

Calver, R.

R. Calver, H. Radhakrishnan, E. Osuobeni1, and D. O'Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27, 584-593 (2007).
[CrossRef] [PubMed]

Choi, M.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Davies, L. N.

L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthamol. 93, 1186-1190 (2009).
[CrossRef]

Delgado, S.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

Dunne, M. C.

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Visual Sci. 45, 2152-2162 (2004).
[CrossRef]

Escudero-Sanz, I.

Everett, D.

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

Farkas, L.

Friedman, N. E.

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022-1030 (2000).

Gilmartin, B.

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Visual Sci. 45, 2152-2162 (2004).
[CrossRef]

Guirao, A.

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363-2373 (2002).
[CrossRef]

A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207-217 (1999).
[CrossRef] [PubMed]

Gustafsson, J.

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005)
[CrossRef] [PubMed]

Gwiazda, J.

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

J. Gwiazda, F. Thorn, J. Bauer, and R. Held, “Myopic children show insufficient accommodative response to blur,” Invest. Ophthalmol. Visual Sci. 34, 690-694 (1993).

Held, R.

J. Gwiazda, F. Thorn, J. Bauer, and R. Held, “Myopic children show insufficient accommodative response to blur,” Invest. Ophthalmol. Visual Sci. 34, 690-694 (1993).

Ho, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

Hoogenboom, W. P. H.

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and the Skiagram,” Ophthalmologica 162, 1-10 (1971).
[CrossRef] [PubMed]

Hoogerheide, J.

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and the Skiagram,” Ophthalmologica 162, 1-10 (1971).
[CrossRef] [PubMed]

Howland, H. C.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

F. Schaeffel, L. Farkas, and H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 26, 1505-1509 (1987).
[CrossRef] [PubMed]

Huang, J.

L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008).
[CrossRef]

Hung, L.

L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008).
[CrossRef]

E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005).
[CrossRef]

Hussein, M. E. M.

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

Hyman, L.

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

Kee, C.

E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005).
[CrossRef]

Lazon de la Jara, P.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

Logan, N. S.

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Visual Sci. 45, 2152-2162 (2004).
[CrossRef]

Lopez-Gil, N.

Lundstrom, L.

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1-11 (2009).
[CrossRef]

Lundström, L.

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005)
[CrossRef] [PubMed]

Mallen, E. A. H.

L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthamol. 93, 1186-1190 (2009).
[CrossRef]

Manny, R.

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

Marsh-Tootle, W.

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

Martinez, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

Mathur, A.

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33, 865-863 (2008).
[CrossRef]

McBrien, N.

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71, 119-125 (1988).
[CrossRef]

Millodot, M.

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71, 119-125 (1988).
[CrossRef]

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691-695 (1981).
[PubMed]

Mira-Agudelo, A.

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1-11 (2009).
[CrossRef]

Mutti, D. O.

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Validation of aberrometry-based relative peripheral refraction measurements,” Ophthalmic Physiol. Opt. 28, 83-90 (2008).
[CrossRef] [PubMed]

T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vision Sci. 79, 424-430 (2002).
[CrossRef]

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022-1030 (2000).

Navarro, R.

Norton, T. T.

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

O'Leary, D.

R. Calver, H. Radhakrishnan, E. Osuobeni1, and D. O'Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27, 584-593 (2007).
[CrossRef] [PubMed]

Osuobeni1, E.

R. Calver, H. Radhakrishnan, E. Osuobeni1, and D. O'Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27, 584-593 (2007).
[CrossRef] [PubMed]

Pritchard, N.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450-1458 (2006).
[CrossRef]

Qiao-Grider, Y.

L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008).
[CrossRef]

E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005).
[CrossRef]

Radhakrishnan, H.

R. Calver, H. Radhakrishnan, E. Osuobeni1, and D. O'Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27, 584-593 (2007).
[CrossRef] [PubMed]

Ramamirtham, R.

L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008).
[CrossRef]

E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005).
[CrossRef]

Rempt, F.

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and the Skiagram,” Ophthalmologica 162, 1-10 (1971).
[CrossRef] [PubMed]

Sankaridurg, P.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

Santamaria, J.

Schaeffel, F.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009).
[CrossRef] [PubMed]

J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Invest. Ophthalmol. Visual Sci. 50, 4516-4522 (2009).
[CrossRef]

R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46, 3935-3940 (2006).
[CrossRef] [PubMed]

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363-2373 (2002).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

F. Schaeffel, L. Farkas, and H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 26, 1505-1509 (1987).
[CrossRef] [PubMed]

Schippert, R.

R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46, 3935-3940 (2006).
[CrossRef] [PubMed]

Schmid, K. L.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450-1458 (2006).
[CrossRef]

Scott, D. H.

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33, 865-863 (2008).
[CrossRef]

Seidemann, A.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009).
[CrossRef] [PubMed]

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363-2373 (2002).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Sholtz, R. I.

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022-1030 (2000).

Smith, E. L.

L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008).
[CrossRef]

E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005).
[CrossRef]

Smith, G.

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71, 119-125 (1988).
[CrossRef]

Tabernero, J.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009).
[CrossRef] [PubMed]

J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Invest. Ophthalmol. Visual Sci. 50, 4516-4522 (2009).
[CrossRef]

Thorn, F.

J. Gwiazda, F. Thorn, J. Bauer, and R. Held, “Myopic children show insufficient accommodative response to blur,” Invest. Ophthalmol. Visual Sci. 34, 690-694 (1993).

Unsbo, P.

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005)
[CrossRef] [PubMed]

Uttenweiler, D.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009).
[CrossRef] [PubMed]

Vazquez, D.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009).
[CrossRef] [PubMed]

Walker, T. W.

T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vision Sci. 79, 424-430 (2002).
[CrossRef]

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
[CrossRef] [PubMed]

Wang, Y.

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

Weiss, S.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Whatham, A.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

Wildsoet, C. F.

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Visual Sci. 45, 2152-2162 (2004).
[CrossRef]

Wilhelm, B.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Wilhelm, H.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
[CrossRef] [PubMed]

Zadnik, K.

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Validation of aberrometry-based relative peripheral refraction measurements,” Ophthalmic Physiol. Opt. 28, 83-90 (2008).
[CrossRef] [PubMed]

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022-1030 (2000).

Zimmermann, F.

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

Am. J. Optom. Physiol. Opt.

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691-695 (1981).
[PubMed]

Appl. Opt.

Br. J. Ophthamol.

L. N. Davies and E. A. H. Mallen, “Influence of accommodation and refractive status on the peripheral refractive profile,” Br. J. Ophthamol. 93, 1186-1190 (2009).
[CrossRef]

Clin. Exp. Optom.

G. Smith, M. Millodot, and N. McBrien, “The effect of accommodation on oblique astigmatism and field curvature of the human eye,” Clin. Exp. Optom. 71, 119-125 (1988).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Invest. Ophthalmol. Visual Sci. 50, 4516-4522 (2009).
[CrossRef]

J. Gwiazda, F. Thorn, J. Bauer, and R. Held, “Myopic children show insufficient accommodative response to blur,” Invest. Ophthalmol. Visual Sci. 34, 690-694 (1993).

J. Gwiazda, L. Hyman, T. T. Norton, M. E. M. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, and D. Everett, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Visual Sci. 45, 2143-2151 (2004).
[CrossRef]

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022-1030 (2000).

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Visual Sci. 45, 2152-2162 (2004).
[CrossRef]

E. L. Smith III, C. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965-3972 (2005).
[CrossRef]

L. Hung, R. Ramamirtham, J. Huang, Y. Qiao-Grider, and E. L. Smith, “Peripheral refraction in normal infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 49, 3747-3757 (2008).
[CrossRef]

J. Biomed. Opt.

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10, 034002 (2005)
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Vision

L. Lundstrom, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 1-11 (2009).
[CrossRef]

A. Whatham, F. Zimmermann, A. Martinez, S. Delgado, P. Lazon de la Jara, P. Sankaridurg, and A. Ho, “Influence of accommodation on off-axis refractive errors in myopic eyes,” J. Vision 9, 1-13 (2009).
[CrossRef]

Neuron

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt.

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Validation of aberrometry-based relative peripheral refraction measurements,” Ophthalmic Physiol. Opt. 28, 83-90 (2008).
[CrossRef] [PubMed]

R. Calver, H. Radhakrishnan, E. Osuobeni1, and D. O'Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27, 584-593 (2007).
[CrossRef] [PubMed]

Ophthalmologica

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and the Skiagram,” Ophthalmologica 162, 1-10 (1971).
[CrossRef] [PubMed]

Opt. Lett.

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33, 865-863 (2008).
[CrossRef]

Optom. Vision Sci.

T. W. Walker and D. O. Mutti, “The effect of accommodation on ocular shape,” Optom. Vision Sci. 79, 424-430 (2002).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Vision Res.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effect of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49, 2176-2186 (2009).
[CrossRef] [PubMed]

R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46, 3935-3940 (2006).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450-1458 (2006).
[CrossRef]

A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207-217 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup with the scanning mirror infrared photoretinoscope.

Fig. 2
Fig. 2

3D peripheral refraction map for an emmetropic subject. The optic nerve excavation on the nasal side of the temporal retina (positive horizontal eccentricity) is clearly seen as an area of more myopia.

Fig. 3
Fig. 3

Peripheral refraction profiles of the 10 subjects participating in the study for the three different accommodation levels.

Fig. 4
Fig. 4

The gain in accommodation calculated as the subtraction of the 4 D and 2 D profiles from the 0.5 D profile. Data in red/dark gray correspond to the gain obtained for the theoretical value of 1.5 D. The data in light gray account for the gain corresponding to the value of 3.5 D. The filled circles are the averages of the experimental data. Error bars denote standard deviation of the average. The thick dashed lines correspond to the 1.5 D and 3.5 D values as a reference to check for lags or leads of accommodation.

Fig. 5
Fig. 5

Normalized gain in accommodation and comparison with theoretical predictions. The gray data on the background represent the gain normalized to the values of −1.5 D and −3.5 D at 0° eccentricity. Filled circles and error bars show the averages of the experimental data and their standard deviations (clustered every 10° of eccentricity). The red/dark gray dashed lines correspond to the theoretical gain from the ray-tracing calculations, also normalized to the −1.5 D and −3.5 D refraction in the fixation axis.

Metrics